Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the interplay between strain and nonstoichiometry for the electronic, magnetic, and redox properties of LiMnO films is essential for their development as Li-ion battery (LIB) cathodes, photoelectrodes, and systems for sustainable spintronics applications as well as for emerging applications that combine these technologies. Here, density functional theory (DFT) simulations suggest that compressive strain increases the reduction drive of (111) LiMnO films by inducing >1 eV upshift of the valence band edge. The DFT results indicate that, regardless of the crystallographic orientation for the LiMnO film, biaxial expansion increases the magnetic moments of the Mn atoms. Conversely, biaxial compression reduces them. For ferromagnetic films, these changes can be substantial and as large as over 4 Bohr magnetons per unit cell over the simulated range of strain (from -6 to +3%). The DFT simulations also uncover a compensation mechanism whereby strain induces opposite changes in the magnetic moment of the Mn and O atoms, leading to an overall constant magnetic moment for the ferromagnetic films. The calculated strain-induced changes in atomic magnetic moments reflect modifications in the local electronic hybridization of both the Mn and O atoms, which in turn suggests strain-tunable, local chemical, and electrochemical reactivity. Several energy-favored (110) and (111) ferromagnetic surfaces turn out to be half-metallic with minority-spin band gaps as large as 3.2 eV and compatible with spin-dependent electron-transport and possible spin-dependent electrochemical and electrocatalytic properties. The resilience of the ferromagnetic, half-metallic states to surface nonstoichiometry and compositional changes invites exploration of the potential of LiMnO thin films for sustainable spintronic applications beyond state-of-the-art, rare-earth metal-based, ferromagnetic half-metallic oxides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c18326 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!