The Agaricomycetes fungi produce various compounds with pharmaceutical, medicinal, cosmetic, environmental and biotechnological properties. In addition, some polysaccharides extracted from the fungal cell wall have antitumor and immunomodulatory actions. The aim of this study was to use genetic modification to transform Schizophyllum commune and identify if the phenotype observed (different from the wild type) resulted in changes of the cell wall polysaccharides. The plasmid pUCHYG-GPDGLS, which contains the Pleurotus ostreatus glucan synthase gene, was used in S. commune transformations. Polysaccharides from cell wall of wild (ScW) and mutants were compared in this study. Polysaccharides from the biomass and culture broth were extracted with hot water. One of the mutants (ScT4) was selected for further studies and, after hydrolysis/acetylation, the GLC analysis showed galactose as the major component in polysaccharide fraction from the mutant and glucose as the major monomer in the wild type. Differences were also found in the elution profiles from HPSEC and NMR analyses. From the monosaccharide composition it was proposed that mannogalactans are components of S. commune cell wall for both, wild and mutant, but in different proportions. To our knowledge, this is the first time that mannogalactans are isolated from S. commune liquid culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202120210047 | DOI Listing |
Phytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFCell Surf
December 2024
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain.
The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.
View Article and Find Full Text PDFTropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).
View Article and Find Full Text PDFMutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!