Recent studies have identified rotational dynamics in motor cortex (MC), which many assume arise from intrinsic connections in MC. However, behavioral and neurophysiological studies suggest that MC behaves like a feedback controller where continuous sensory feedback and interactions with other brain areas contribute substantially to MC processing. We investigated these apparently conflicting theories by building recurrent neural networks that controlled a model arm and received sensory feedback from the limb. Networks were trained to counteract perturbations to the limb and to reach toward spatial targets. Network activities and sensory feedback signals to the network exhibited rotational structure even when the recurrent connections were removed. Furthermore, neural recordings in monkeys performing similar tasks also exhibited rotational structure not only in MC but also in somatosensory cortex. Our results argue that rotational structure may also reflect dynamics throughout the voluntary motor system involved in online control of motor actions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691841PMC
http://dx.doi.org/10.7554/eLife.67256DOI Listing

Publication Analysis

Top Keywords

sensory feedback
12
rotational structure
12
rotational dynamics
8
dynamics motor
8
motor cortex
8
feedback controller
8
exhibited rotational
8
rotational
5
feedback
5
motor
4

Similar Publications

Background: Different modes of motor acquisition, including motor execution (ME), motor imagery (MI), action observation (AO), and mirror visual feedback (MVF), are often used when learning new motor behavior and in clinical rehabilitation.

Purpose: The aim of this study was to investigate differences in brain activation during different motor acquisition modes among healthy young adults.

Methods: This cross-sectional study recruited 29 healthy young adults.

View Article and Find Full Text PDF

Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.

View Article and Find Full Text PDF

The rapid urbanization has led to the loss of natural spaces and a subsequent disconnection between humans and nature, negatively affecting residents' well-being and environmental awareness. There is a a growing interest in leveraging technology to address this gap in Human-Computer Interaction. This article introduces GoChirp, an AI-powered wearable device for enhancing nature relatedness within urban landscapes.

View Article and Find Full Text PDF

Animals requiring purposeful movement for survival are endowed with mechanoreceptors, called proprioceptors, that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we identified nonredundant roles for two voltage-gated sodium channels (Nas), Na1.

View Article and Find Full Text PDF

Research into new solutions for wearable assistive devices for the visually impaired is an important area of assistive technology (AT). This plays a crucial role in improving the functionality and independence of the visually impaired, helping them to participate fully in their daily lives and in various community activities. This study presents a bibliometric analysis of the literature published over the last decade on wearable assistive devices for the visually impaired, retrieved from the Web of Science Core Collection (WoSCC) using CiteSpace, to provide an overview of the current state of research, trends, and hotspots in the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!