Management of lignocellulosic wastes in and around the municipality area requires special consideration. Continuous deposition of these wastes to the nearby areas led to gradual deterioration of the environment. The objective of this study was to produce cellulase from the bacteria isolated from the unexplored rainforest of NE-India for lignocellulosic waste hydrolysis. Based on carboxymethyl cellulose utilization and the congo red test, sp. Cm1 was found to be the most promising strain out of 114 bacterial isolates and the strain was selected for further study. The optimization of the fermentative conditions for maximum enzyme activity was carried out using one factor-at-a-time strategy and the optimum pH, temperature and incubation time was recorded as pH 5, 37 °C and 96 h respectively. The maximum β-1,4-endoglucanase activity was observed with 1.5% CMC (5.1 ± 0.05 U/mL) and 0.25% yeast extract (7.6 ± 0.72 U/mL). The bacterial waste hydrolysis ability was investigated using three wastes where vegetable waste showed maximum activity of 3.4 ± 0.48 U/mL. Bacterial interaction and waste utilization were verified using Scanning Electron Microscope and Fourier-Transform infrared spectroscopy analysis. The present study confirmed the promising ability of sp. to waste hydrolysis. Further investigations may lead to new possibilities for low-cost enzyme production that will help to meet the rising cellulase demand.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2021.1989698DOI Listing

Publication Analysis

Top Keywords

waste hydrolysis
16
lignocellulosic waste
8
waste
6
production cellulase
4
cellulase cm1
4
cm1 potential
4
potential application
4
application lignocellulosic
4
hydrolysis
4
hydrolysis management
4

Similar Publications

Green process for xylo-oligosaccharide production from acetic acid hydrolysis of sugarcane bagasse by an integrated membrane technology and activated carbon adsorption.

J Environ Manage

January 2025

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

Xylooligosaccharides (XOS), consisting 2-6 xylose residues, are a new type of prebiotic and functional oligosaccharides, and can usually be produced from the xylan-riched lignocellulosic biomass by acetic acid (HAc) hydrolysis, while the waste HAc was a problem to the environment. In this study, the main aim was to recover and reuse the waste HAc in XOS production. First, it was found that a temperature of 190 °C and a hydrolysis time of 60 min were favorable for XOS production by HAc hydrolysis, and the by-products xylose and furfural were the main inhibitors, hindering the reuse of the waste HAc.

View Article and Find Full Text PDF

Removal of Antibiotics in Breeding Wastewater Tailwater Using Microalgae-Based Process.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.

Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.

View Article and Find Full Text PDF

This study explores the effects of a subcritical seawater treatment (SST) on buckwheat waste (BW), and the use of the hydrolysate as a liquid fertilizer to improve the growth of lettuce ( L.). Three temperature treatments (110 °C, 170 °C, 230 °C) were used for the SST, and the ionic composition in the seawater achieved the depolymerization and degradation of BW.

View Article and Find Full Text PDF

Diamond-wire sawing silicon waste (DSSW) derived from the silicon wafer sawing process may lead to resource waste and environmental issues if not properly utilized. This paper propounds a simple technique aimed at enhancing the efficiency of hydrogen production from DSSW. The hydrolysis reaction is found to become faster when DSSW is ground.

View Article and Find Full Text PDF

The present article focuses on the characterization of the new biocomposites of poly(butylene succinate) (PBS) with fillers of plant origin such as onion peels (OP) and durum wheat bran WB () subjected to composting and artificial aging. The susceptibility to fungal growth, cytotoxicity and antibacterial properties were also examined. The biodegradation of the samples was investigated under normalized conditions simulating an intensive aerobic composting process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!