Zwitterions have been attracting emerging attention as an anti-fouling polymer. However, the relationship between structured solvation shells and controlled drug release induced by deceleration of water molecule's translational and vibrational motions of zwitterions is an uncharted territory. Herein, sulfobetaine zwitterion nanoparticles (ZWNPs) were designed as a stable nitric oxide (NO)-delivering carrier. The condensed water structure of the solvation shell at its isoelectric point (PI) and the loose structure of water under different pH conditions were investigated through rheological and thermodynamical analyses. The ZWNPs showed a sustained-release profile at the PI, which presented a structured solvation barrier. On the other hand, NO-loaded ZWNPs showed different release profiles with the burst release at pH 5.5. Notably, an increased cell proliferation rate and a decreased antibacterial effect were observed at the same concentration depending on solvation shell's characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c15701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!