Propolis is the extract of a resinous compound that protects plants from both cold and microorganism attack and has gained a strong and sticky property because it is transformed after being collected by honey bees. Up to date, many studies have shown that propolis exhibited various beneficial biological activities, such as antifungal, antibacterial, antiviral, antioxidant, antimutagenic, and antitumor effects. Recent reports propounded the in vitro and in vivo neuroprotective effect of propolis; however, the exact molecular genetic mechanisms are still unclear. Therefore, we aimed to investigate the toxicogenomic and beneficial properties, including cytotoxic, antioxidant, apoptotic/necrotic as well as genotoxic effects of propolis (1.56-200 µg/ml) on differentiated SH-SY5Y neuronal cells. Additionally, microarray analysis was conducted on cell cultures following propolis application to explore gene differentiation. Differentially expressed genes were further analyzed using string software to characterize protein-protein interactions between gene pathways. Our results revealed that propolis applications could not have a prominent effect on cell viability even at concentrations up to 200 µg/ml. The highest propolis concentration induced apoptotic rather than necrotic cell death. The alterations in gene expression profiles, including CYP26A1, DHRS2, DHRS3, DYNC1I1, IGF2, ITGA4, SVIL, TGFβ1, and TGM2 could participate in the neuroprotective effects of propolis. In conclusion, propolis supplementation exerted remarkable advantageous; thus, it may offer great potential as a natural component in the prevention and treatment of neurodegenerative disorders. Whole-genome gene expression pattern following propolis application was investigated for the first time in neuronal cell culture to fill a gap in the literature about propolis toxicogenomics. PRACTICAL APPLICATIONS: Propolis is a very rich product in terms of benefits. In addition to its antibacterial, antiviral, antifungal, and anti-inflammatory content, it is known to have preventive and therapeutic properties for many different ailments. On the other hand, molecular mechanisms of propolis on gene expression differentiations haven't been investigated until now. Moreover, gene expression pattern is vital for all living organisms to maintain homeostasis. Thus, we conduct an experiment series for analyzing gene expression differentiation effects on neuronal cells to understand beneficial properties of propolis. Hence, it could be possible to comment on the use of propolis as a nutritional factor and beneficial diet.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13990DOI Listing

Publication Analysis

Top Keywords

gene expression
20
propolis
16
differentiated sh-sy5y
8
antibacterial antiviral
8
beneficial properties
8
effects propolis
8
neuronal cells
8
propolis application
8
expression pattern
8
gene
7

Similar Publications

Background: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.

View Article and Find Full Text PDF

Introduction: Sepsis, like neutropenic sepsis, is a medical condition in which our body overreacts to infectious agents. It is associated with damage to normal tissues and organs by the immune system, which leads to the spread of inflammation throughout our body. Of note, microRNAs (miRNAs) have been found to have a critical role in the sepsis progression.

View Article and Find Full Text PDF

Understanding Tankyrase Inhibitors and Their Role in the Management of Different Cancer.

Curr Cancer Drug Targets

January 2025

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.

Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.

View Article and Find Full Text PDF

Background: Axial Spondyloarthritis (axSpA) is a chronic inflammatory rheumatic condition affecting the axial skeleton, leading to pain, stiffness, and fatigue. While biologic therapies have improved clinical management, many patients experience partial or no responses, resulting in delays in disease control. Additionally, the risk of adverse events and increased costs remains a concern.

View Article and Find Full Text PDF

CD226 plays a vital role in natural killer (NK) cell cytotoxicity, interacting with its ligands CD112 and CD155 to initiate immune synapse formation, primarily through leukocyte function-associated-1 (LFA-1). Our study examined the role of CD226 in NK cell surveillance of acute myeloid leukemia (AML). NK cells in patients with AML had lower expression of CD226.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!