An expeditious and highly efficient synthesis of substituted pyrroles using a low melting deep eutectic mixture.

Org Biomol Chem

Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi, 110025, India.

Published: November 2021

An expeditious green method for the synthesis of diverse valued substituted pyrroles through a Paal-Knorr condensation reaction, using a variety of amines and 2,5-hexanedione/2,5-dimethoxytetrahydrofuran in the presence of a low melting mixture of ,-dimethylurea and -(+)-tartaric acid (which acts as a dual catalyst/solvent system), has fruitfully been revealed. Herein, we have disclosed the applicability of this simple yet effective strategy for the generation of mono- and dipyrroles in good to excellent yields. Moreover, -symmetric tripyrrolo-truxene derivatives have also been assembled by means of cyclotrimerization, Paal-Knorr and Clauson-Kaas reactions as crucial steps. Interestingly, the melting mixture was recovered and reused with only a gradual decrease in the catalytic activity (over four cycles) without any significant drop in the yield of the product. This particular methodology is simple, rapid, environmental friendly, and high yielding for the generation of a variety of pyrroles. To the best of our knowledge, the present work reveals the fastest greener method reported up to this date for the construction of substituted pyrroles by utilizing the Paal-Knorr synthetic protocol, achieving impressive yields under operationally simple reaction conditions without involving any precarious/dangerous catalysts or unsafe volatile organic solvents.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1ob01618kDOI Listing

Publication Analysis

Top Keywords

substituted pyrroles
12
low melting
8
melting mixture
8
expeditious highly
4
highly efficient
4
efficient synthesis
4
synthesis substituted
4
pyrroles
4
pyrroles low
4
melting deep
4

Similar Publications

Aims: Gastrointestinal stromal tumors (GISTs) account for about 80% of the mesenchymal tumors of the GI tract. About 5000-6000 patients are diagnosed in the United States (US) alone, and up to 14.5 cases per million discovered in Europe annually.

View Article and Find Full Text PDF

Molecular structure characteristic of coals of different rank.

J Mol Model

January 2025

School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Haidian District, Ding No.11 Xueyuan Road, Beijing, 100083, People's Republic of China.

Context: Understanding the structural characteristics of coal at the molecular level is fundamental for its effective utilization. To explore the molecular structure characteristic, the long-flame coal from Daliuta (DLT), coking coal from Yaoqiao (YQ), and anthracite from Taixi (TX) were investigated using various techniques such as elemental analysis, Fourier transform infrared spectroscopy, solid-state C nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. Based on the structural parameters, the coal molecular model was constructed and optimized.

View Article and Find Full Text PDF

One-Pot Domino Catalysis to Construct Alkyl/Aryl Pyrroles Initiated by Pd-TMM Annulation of Unactivated Imines.

Org Lett

January 2025

China Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, and Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.

Herein, a one-pot domino catalyzed three-component process is described, which is initiated by a palladium/zinc cooperatively catalyzed cycloaddition between trimethylenemethane (TMM) and unactivated alkyl/aryl imines, followed by one-pot isomerization and Zn(OTf)-catalyzed DDQ oxidation, furnishing valuable substituted pyrroles. We disclose that the palladium/zinc cooperative catalysis affords a dual-Zn(OTf)-stabilized azapalladacycle, wherein the Pd-N bond is polarized by Zn(OTf), facilitating a unique outer-sphere allylic amination. Moreover, subsequent DDQ dehydrogenation can be feasibly promoted by zinc catalysis.

View Article and Find Full Text PDF

This study presents a comprehensive exploration of the synthesis of novel compounds targeting Chagas Disease (CD) caused by Trypanosoma cruzi. It is a global health threat with over 6-7 million infections worldwide. Addressing challenges in current treatments, the investigation explores diverse compound classes, including thiazoles, thiazolidinone, imidazole, pyrazole, 1,6-diphenyl-1H-pyrazolo[3,4-b] pyridine, pyrrole, naphthoquinone, neolignan, benzeneacyl hydrazones, and chalcones-based compounds.

View Article and Find Full Text PDF

Total syntheses of the parvistemoline alkaloids enabled by stereocontrolled Ir/Pd-catalyzed allylic alkylation.

Nat Commun

December 2024

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.

The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!