COVID-19 (Coronavirus disease of 2019) pandemic is one of the largest health threats the planet has faced in recent decades. Efforts are being continuously made to design a viable drug or a vaccine. Several natural and synthetic molecules are under study for their potency to inhibit viral replication. In order to emphasize the importance of microbial-based natural components in antiviral drug discovery, an attempt has been made through this study to find potential inhibitors for SARS-CoV-2 Papain-Like protease (PLpro) molecule from microbial sources. PLpro, with its multifunctional roles like viral polypeptide proteolysis and suppression of the host's innate immune response, is acting as a potential drug target. The X-ray crystal structure of PLpro and ligand molecules were retrieved from the protein structure database and Npatlas database, respectively. The molecules were screened based on drug likeliness and the pharmacophore model created in reference to a known potent PLpro inhibitor GRL0617. Totally 3272 molecules have undergone the docking process and the complexes of top hits were subjected to 100 ns molecular dynamic simulation. The results showed that Holyrine B, Dihydroarcyriarubin C, Baraphenazine C and 3-hydroxy-3'-N-acetylholyrine A had formed a stable complex in the active site of the PLpro with significant interaction efficiency. Earlier studies showed that Holyrine B could also be a possible inhibitor of the Main protease of SARS-CoV-2, which increases its significance in the process of COVID-19 drug development. In conclusion, these microbial compounds can be considered as possible SARS-CoV-2 inhibitors for further in vitro studies. Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2021.1997815DOI Listing

Publication Analysis

Top Keywords

potential inhibitors
8
inhibitors sars-cov-2
8
sars-cov-2 papain-like
8
papain-like protease
8
protease plpro
8
dynamic simulation
8
plpro
6
drug
5
microbial based
4
based natural
4

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Novel Therapies for Right Ventricular Failure.

Curr Cardiol Rep

January 2025

Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.

Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.

View Article and Find Full Text PDF

Background: Celiac disease (CeD) has shown an association with autoimmune disorders including vitiligo and alopecia areata (AA). Ritlecitinib, a JAK3 and TEC kinase family inhibitor, has been approved for treatment of patients with AA and is in late-stage development for vitiligo. Ritlecitinib inhibits cytotoxic T cells, NK cells, and B cells which play a role in the pathogenesis of CeD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!