Introduction: Recently developed algorithm for prediction of side-specific extracapsular extension (ECE) of prostate cancer required validation before being recommended to use. The algorithm assumed that ECE on a particular side was not likely with same side maximum tumor diameter (MTD) <15 mm AND cancerous tissue in ipsilateral biopsy <15% AND PSA <20 ng/mL (both sides condition). The aim of the study was to validate this predictive tool in patients from another department.
Material And Methods: Data of 154 consecutive patients (308 prostatic lateral lobes) were used for validation. Predictive factors chosen in the development set of patients were assessed together with other preoperative parameters using logistic regression to check for their significance. Sensitivity, specificity, negative and positive predictive values were calculated for bootstrapped risk-stratified validation dataset.
Results: Validation cohort did not differ significantly from development cohort regarding PSA, PSA density, Gleason score (GS), MTD, age, ECE and seminal vesicle invasion rate. In bootstrapped data set (n = 200 random sampling) algorithm revealed 70.2% sensitivity (95% confidence interval (CI) 58.8-83.0%), 49.9% specificity (95%CI: 42.0-57.7%), 83.9% negative predictive value (NPV; 95%CI: 76.1-91.4%) and 31.1% positive predictive value (PPV; 95%CI: 19.6-39.7%). When limiting analysis to high-risk patients (Gleason score >7) the algorithm improved its performance: sensitivity 91%, specificity 47%, PPV 53%, NPV 89%.
Conclusions: Analyzed algorithm is useful for identifying prostate lobes without ECE and deciding on ipsilateral nerve-sparing technique during radical prostatectomy, especially in patients with GS >7. Due to significant number of false positives in case of: MTD ≥15 mm OR cancer in biopsy ≥15% OR PSA ≥20 ng/mL additional evaluation is necessary to aid decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552930 | PMC |
http://dx.doi.org/10.5173/ceju.2021.0128.R2 | DOI Listing |
Circ Genom Precis Med
January 2025
Mary and Steve Wen Cardiovascular Division, Department of Medicine, University of California, Los Angeles. (W.F., N.D.W.).
Background: Lp(a; Lipoprotein[a]) is a predictor of atherosclerotic cardiovascular disease (ASCVD); however, there are few algorithms incorporating Lp(a), especially from real-world settings. We developed an electronic health record (EHR)-based risk prediction algorithm including Lp(a).
Methods: Utilizing a large EHR database, we categorized Lp(a) cut points at 25, 50, and 75 mg/dL and constructed 10-year ASCVD risk prediction models incorporating Lp(a), with external validation in a pooled cohort of 4 US prospective studies.
Emerg Microbes Infect
January 2025
Key Laboratory of Jiangxi Province for Transfusion Medicine, Department of Blood Transfusion, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
The tRNA-derived small RNAs (tsRNAs) are a new class of non coding RNAs, which are stable in body fluids and can be used as potential biomarkers for disease diagnosis. However, the exact value of tsRNAs in the diagnosis of tuberculosis (TB) is still unclear. The objective of the present study was to evaluate the performance of the serum tsRNAs biosignature to distinguish between active TB, healthy controls, latent TB infection, and other respiratory diseases.
View Article and Find Full Text PDFAccurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Surgery, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, United States.
Molecular characterization of tumors is essential to identify predictive biomarkers that inform treatment decisions and improve precision immunotherapy development and administration. However, challenges such as the heterogeneity of tumors and patient responses, limited efficacy of current biomarkers, and the predominant reliance on single-omics data, have hindered advances in accurately predicting treatment outcomes. Standard therapy generally applies a "one size fits all" approach, which not only provides ineffective or limited responses, but also an increased risk of off-target toxicities and acceleration of resistance mechanisms or adverse effects.
View Article and Find Full Text PDFFront Public Health
January 2025
Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.
Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!