In the article, computer simulation on the behavior of a ferromagnetic thin film on a non-magnetic substrate by computer simulation is performed. The substrate is described by the two-dimensional Frenkel-Kontorova potential. The Ising model is used to describe the magnetic properties of a two-dimensional ferromagnetic film. The Wolf cluster algorithm is used to model the magnetic behavior of the film. A square lattice is considered for an unperturbed ferromagnetic film. Computer simulations show that mismatch of film and substrate periods results in film splitting into regions with different atomic structures. Magnetic properties for the obtained structure have been investigated. The hysteresis loop is calculated using the Metropolis algorithm. Deformations of the substrate lead to a decrease in the phase transition temperature. The Curie temperature decreases both when the substrate is compressed and when stretched. The change in phase transition temperature depends on the decreasing rate of exchange interaction with distance and the amplitude of interaction with the substrate. When the substrate is compressed, an increase in the amplitude of the interaction between the film and the substrate results in an increase in the phase transition temperature. The opposite effect occurs when the substrate is stretched. The hysteresis loop changes its shape and parameters when the substrate is deformed. Compression and stretching of the substrate results in a decrease in coercive force. The reduction in coercive force when compressing the substrate is greater than when stretching. The magnetization of the film is reduced by deformations at a fixed temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563884 | PMC |
http://dx.doi.org/10.1038/s41598-021-00849-8 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China.
Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany.
The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.
View Article and Find Full Text PDFJ Esthet Restor Dent
January 2025
Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Kiel, Germany.
Objective: Investigation of the mechanical properties of occlusal veneers made from zirconia with varying translucency, bonded to different tooth substrates.
Materials And Methods: Sixty-four extracted molars were divided into two groups: preparation within enamel (E) or extending into dentin (D). Veneers were milled from four zirconia ceramics (n = 8): 5Y-TZP (HT), a multilayer of 5 and 3Y-TZP (GT), 3Y-TZP (LT), and 4Y-TZP (MT).
Circ Cardiovasc Imaging
January 2025
Division of Cardiology, Department of Medicine, University of California, San Francisco (L.C., S.D., D.B., J.J.T., Q.F., L.T., A.H.R., R.J., S.H., H.H.H., Z.H.T., N.B.S., F.N.D.).
Background: A subset of patients with mitral valve prolapse (MVP), a highly heritable condition, experience sudden cardiac arrest (SCA) or sudden cardiac death (SCD). However, the inheritance of phenotypic imaging features of arrhythmic MVP remains unknown.
Methods: We recruited 23 MVP probands, including 9 with SCA/SCD and 14 with frequent/complex ventricular ectopy.
FEBS J
January 2025
Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India.
Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!