Molecular characterization of metabolic subtypes of gastric cancer based on metabolism-related lncRNA.

Sci Rep

Key Laboratory of Image Information Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.

Published: November 2021

Increasing evidence has demonstrated that lncRNAs are critical regulators in diverse biological processes, but the function of lncRNA in metabolic regulation remains largely unexplored. In this study, we evaluated the association between lncRNA and metabolic pathways and identified metabolism-related lncRNAs. Gastric cancer can be mainly subdivided into 2 clusters based on these metabolism-related lncRNA regulators. Comparative analysis shows that these subtypes are found to be highly consistent with previously identified subtypes based on other omics data. Functional enrichment analysis shows that they are enriched in distinct biological processes. Mutation analysis shows that ABCA13 is a protective factor in subtype C1 but a risk factor in C2. Analysis of chemotherapeutic and immunotherapeutic sensitivity shows that these subtypes tend to display distinct sensitivity to the same chemical drugs. In conclusion, these findings demonstrated the significance of lncRNA in metabolic regulation. These metabolism-related lncRNA regulators can improve our understanding of the underlying mechanism of lncRNAs and advance the research of immunotherapies in the clinical management of gastric cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563741PMC
http://dx.doi.org/10.1038/s41598-021-00410-7DOI Listing

Publication Analysis

Top Keywords

gastric cancer
12
metabolism-related lncrna
12
lncrna metabolic
12
based metabolism-related
8
biological processes
8
metabolic regulation
8
lncrna regulators
8
lncrna
6
molecular characterization
4
metabolic
4

Similar Publications

Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.

Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.

Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.

View Article and Find Full Text PDF

Objective: The aim of this study was to develop and validate predictive models for perineural invasion (PNI) in gastric cancer (GC) using clinical factors and radiomics features derived from contrast-enhanced computed tomography (CE-CT) scans and to compare the performance of these models.

Methods: This study included 205 GC patients, who were randomly divided into a training set (n=143) and a validation set (n=62) in a 7:3 ratio. Optimal radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm.

View Article and Find Full Text PDF

Gastric Cancer Models Developed via GelMA 3D Bioprinting Accurately Mimic Cancer Hallmarks, Tumor Microenvironment Features, and Drug Responses.

Small

January 2025

Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.

Current in vitro models for gastric cancer research, such as 2D cell cultures and organoid systems, often fail to replicate the complex extracellular matrix (ECM) found in vivo. For the first time, this study utilizes a gelatin methacryloyl (GelMA) hydrogel, a biomimetic ECM-like material, in 3D bioprinting to construct a physiologically relevant gastric cancer model. GelMA's tunable mechanical properties allow for the precise manipulation of cellular behavior within physiological ranges.

View Article and Find Full Text PDF

Peritoneal carcinomatosis (PC) in gastric adenocarcinoma (GAC) is the most common metastatic site and leads to a short median survival. Exosomes have been shown to remodel the microenvironment, facilitating tumor metastases. However, the functional component in GAC cell-derived exosomes that remodel the landscape in the peritoneal cavity remains unclear.

View Article and Find Full Text PDF

Gastric polyps are not created equal: Know your enemy.

World J Gastroenterol

January 2025

Department of Gastroenterology and Hepatology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon.

Gastric polyps are commonly detected during upper gastrointestinal endoscopy. They are most often benign and rarely become malignant. Nevertheless, adequate knowledge, diagnostic modalities, and management strategies should be the endoscopist's readily available "weapons" to defeat the potentially malignant "enemies".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!