The Role of Ruthenium Compounds in Neurologic Diseases: A Minireview.

J Pharmacol Exp Ther

Department of Morphology and the Institute of Biomedicine, School of Medicine (F.V.G.J., G.A.M., J.d.S.R.C., C.R.R., R.B.O.) and Department of Organic and Inorganic Chemistry (E.M.C., L.G.d.F.L.), Federal University of Ceará, Fortaleza, Brazil; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana (L.B.); and Laboratory of Experimental Vascular Surgery and Gene Expression, School of Medicine, Christus University Center (UNICHRISTUS), Fortaleza, Brazil (M.W.S.C.)

Published: January 2022

Ruthenium compounds, nitric oxide donors in biologic systems, have emerged as a promising therapeutic alternative to conventional drugs in anticancer chemotherapy and as a potential neuroprotective agent with fewer cytotoxic effects. This minireview summarizes promising studies with ruthenium complexes and their roles in cancer, neuroinflammation, neurovascular, and neurodegenerative diseases. The up-to-date evidence supports that ruthenium-based compounds have beneficial effects against gliomas and other types of brain cancers, reduce motor symptoms in models of cerebral ischemia-reperfusion, and may act in the control of nociceptive and inflammatory events, such as those seen in early Alzheimer's disease. More studies are needed to fill many current knowledge gaps about the intricate and complex biologic effects and therapeutic-related mechanisms of ruthenium, stimulating further research. SIGNIFICANCE STATEMENT: This minireview summarizes studies addressing the role of ruthenium compounds on neurological illnesses, focusing on brain cancer and neurovascular and neurodegenerative diseases. No such review is available in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.121.000798DOI Listing

Publication Analysis

Top Keywords

ruthenium compounds
12
role ruthenium
8
minireview summarizes
8
neurovascular neurodegenerative
8
neurodegenerative diseases
8
compounds
4
compounds neurologic
4
neurologic diseases
4
diseases minireview
4
ruthenium
4

Similar Publications

Dye sensitized solar cells: Meta-analysis of effect sensitizer-type on photovoltaic efficiency.

Heliyon

January 2025

Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Puerto Colombia, 81007, Colombia.

Since Dye-Sensitized Solar Cells (DSSCs) was created, a versatile and cost-effective alternative among photovoltaic technology options for power generation and energy transition to combat climate change have emerged. The theoretical and experimental knowledge of DSSCs have increased in regard to their operation in the last three decades of development; it includes the device's components, as well as the most recent innovations in their application and forms of activation. In this work paper, we presented a meta-study of photovoltaic characterization parameters, 329 scientific reports of DSSCs were considered to compare three types of sensitizers (Organometallics, non-metal organic dyes and, natural dyes).

View Article and Find Full Text PDF

TBAT-Catalyzed Dioxasilinane Formation from Beta-Hydroxy Ketones.

Tetrahedron

February 2025

Department of Chemistry, Western Washington University, Bellingham, WA 98225 (USA).

Beta-hydroxy ketones can be reduced using a sequence of ruthenium-catalyzed silyl etherification followed by tetrabutylammonium fluoride (TBAF) promoted intramolecular hydrosilylation. Switching from TBAF to tetrabutylammonium difluorotriphenylsilicate (TBAT), even without first forming the silyl ether, gave cyclic dioxasilinane products. These somewhat sensitive compounds could be isolated pure by column chromatography using florisil as the stationary phase.

View Article and Find Full Text PDF

CO2-based hydroesterification is an attractive route to produce value added ester compounds, which could replace CO-based hydroesterification processes if sufficient catalytic technologies are developed. One path to CO2-based hydroesterification is through an organoformate intermediate, which is then used in olefin hydroesterification to generate the desirable esters.  This route creates a net CO2-based hydroesterification process using tandem catalytic systems for CO2 hydrogenation to organoformate paired with formate-olefin hydroesterification.

View Article and Find Full Text PDF

Ruthenium-catalyzed three-component tandem remote C-H functionalization of naphthalenes: modular and concise synthesis of multifunctional naphthalenes.

Chem Sci

December 2024

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China

The prevalence of naphthalene compounds in biologically active natural products, organic ligands and approved drugs has motivated investigators to develop efficient strategies for their selective synthesis. C-H functionalization of naphthalene has been frequently deployed, but mainly involves two-component reactions, while multiple-component C-H functionalization for the synthesis of naphthalene compounds has thus far proven elusive. Herein, we disclose a versatile three-component protocol for the modular synthesis of multifunctional naphthalenes from readily available simple naphthalenes, olefins and alkyl bromides P(iii)-assisted ruthenium-catalyzed remote C-H functionalization.

View Article and Find Full Text PDF

Prediction of Pt, Ir, Ru, and Rh complexes light absorption in the therapeutic window for phototherapy using machine learning.

J Cheminform

January 2025

PROMOCS Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende (CS), Italy.

Effective light-based cancer treatments, such as photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), rely on compounds that are activated by light efficiently, and absorb within the therapeutic window (600-850 nm). Traditional prediction methods for these light absorption properties, including Time-Dependent Density Functional Theory (TDDFT), are often computationally intensive and time-consuming. In this study, we explore a machine learning (ML) approach to predict the light absorption in the region of the therapeutic window of platinum, iridium, ruthenium, and rhodium complexes, aiming at streamlining the screening of potential photoactivatable prodrugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!