Background: Cognitive impairment is integral to the pathophysiology of psychosis. Recent findings implicate autonomic arousal-related activity in both momentary fluctuations and individual differences in cognitive performance. Although altered autonomic arousal is common in patients with first-episode psychosis (FEP), its contribution to cognitive performance is unknown.
Methods: A total of 24 patients with FEP (46% male, age = 24.31 [SD 4.27] years) and 24 control subjects (42% male, age = 27.06 [3.44] years) performed the Multi-Source Interference Task in-scanner with simultaneous pulse oximetry. First-level models included the cardiac-blood oxygen level-dependent regressor, in addition to task (congruent, interference, and error) and nuisance (motion and CompCor physiology) regressors. The cardiac-blood oxygen level-dependent regressor reflected parasympathetic arousal-related activity and was created by convolving the interbeat interval at each heartbeat with the hemodynamic response function. Group models examined the effect of group or cognitive performance (reaction times × error rate) on arousal-related and task activity, while controlling for sex, age, and framewise displacement.
Results: Parasympathetic arousal-related activity was robust in both groups but localized to different regions for patients with FEP and healthy control subjects. Within both groups, arousal-related activity was significantly associated with cognitive performance across occipital and temporal cortical regions. Greater arousal-related activity in the bilateral prefrontal cortex (Brodmann area 9) was related to better performance in healthy control subjects but not patients with FEP.
Conclusions: Autonomic arousal circuits contribute to cognitive performance and the pathophysiology of FEP. Arousal-related functional activity is a novel indicator of cognitive ability and should be incorporated into neurobiological models of cognition in psychosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054940 | PMC |
http://dx.doi.org/10.1016/j.bpsc.2021.10.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!