Discovery of novel aminosaccharide-based sulfonamide derivatives as potential carbonic anhydrase II inhibitors.

Bioorg Med Chem Lett

Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:

Published: December 2021

In this paper, a new class of novel sulfonamides incorporating aminosaccharide tails were designed and synthesized based on the sugar-tail approach. Then, all the novel compounds were evaluated for their inhibitory activities against three carbonic anhydrase (CA, EC 4.2.1.1) isoenzymes (hCA I, hCA II and hCA IX). Interestingly, effective inhibition of these three CA isoforms were observed, especially the glaucoma associated isoform hCA II. It is worth noting that these glycoconjugated sulfonamide derivatives also showed better CA inhibitory effects compared to the initial segment carzenide. Among them, compound 8d was the most effective inhibitor with IC of 60 nM against hCA II. Subsequent physicochemical properties studies showed that all compounds have good water solubility and neutral pH values in solutions. And these important physicochemical properties make target compounds acquire obvious advantages in the preparation of topical and nonirritating antiglaucoma drugs. Moreover, the target compounds showed lower corneal cytotoxicity than acetazolamide (AAZ) and good metabolic stability in vitro. In addition, molecular docking studies confirmed the interactions between aminosaccharide fragment and hydrophilic subpocket of hCA II active site were crucial for the enhanced CA inhibitory activity. Taken together, these results suggested 8d would be a promising lead compound for the development of topical antiglaucoma CAIs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2021.128420DOI Listing

Publication Analysis

Top Keywords

sulfonamide derivatives
8
carbonic anhydrase
8
hca hca
8
physicochemical properties
8
target compounds
8
hca
6
discovery novel
4
novel aminosaccharide-based
4
aminosaccharide-based sulfonamide
4
derivatives potential
4

Similar Publications

The inhibition of human microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is a promising therapeutic modality for developing next-generation anti-inflammatory medications. In this study, we present novel 2-phenylbenzothiazole derivatives featuring heteroaryl sulfonamide end-capping substructures as inhibitors of human mPGES-1, with IC values in the range of 0.72-3.

View Article and Find Full Text PDF

This study is focused on the design, synthesis, and evaluation of some sulfonamide derivatives for their inhibitory effects on human carbonic anhydrase (hCA) enzymes I, II, IX, and XII as well as for their antioxidant activity. The purity of the synthesized molecules was confirmed by the HPLC purity analysis and was found in the range of 93%-100%. The inhibition constant (K) against hCA I ranged from 0.

View Article and Find Full Text PDF

Bioactive Sulfonamides Derived from Amino Acids: Their Synthesis and Pharmacological Activities.

Mini Rev Med Chem

January 2025

Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.

Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides.

View Article and Find Full Text PDF

Tetrazole Is a Novel Zinc Binder Chemotype for Carbonic Anhydrase Inhibition.

ACS Med Chem Lett

January 2025

NEUROFARBA Department, Section of Pharmaceutical Science, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.

The tetrazole group is here proposed as a zinc-binding warhead for the inhibition of the metalloenzyme carbonic anhydrases. A set of synthesized derivatives incorporating the tetrazole moiety were evaluated as inhibitors against a panel of human isoforms, exhibiting values spanning between the submicromolar and low-to-medium micromolar ranges (0.62-19.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!