Age at Parkinson's disease onset modulates the effect of levodopa on response inhibition: Support for the dopamine overdose hypothesis from the antisaccade task.

Neuropsychologia

Department of Neurology, Philipps-University Marburg, Marburg, Germany; CMBB - Center for Mind, Brain, and Behavior, Universities of Marburg and Gießen, Marburg, Germany; Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany.

Published: December 2021

The antisaccade task is an established eye-tracking paradigm to explore response inhibition. While many studies showed that antisaccade performance is impaired in Parkinson's disease (PD), the effect of dopaminergic medication is still an area of debate. According to the dopamine overdose hypothesis, intrinsic basal dopamine levels in ventral parts of the striatum determine whether levodopa intake has beneficial or detrimental effects on dopamine-dependent cognitive tasks. The objective of this study was therefore to explore the effect of several disease-related factors on changes in antisaccade performance after levodopa intake in PD. Thirty-five individuals with PD (and 30 healthy controls) performed antisaccades in OFF and ON medication state. Multiple linear regressions were calculated to predict the change in antisaccade latency, directive errors and express saccade rate based on age at PD onset, disease duration, levodopa-equivalent daily dose, motor symptom severity and executive functions. Levodopa intake did not alter antisaccade performance on a group level. However, the effect of levodopa was differentially modulated by age at PD onset and motor symptom severity. Earlier disease onset and milder motor symptoms in OFF medication state were associated with reduced response inhibition capacity after levodopa intake measured as increased express saccade and error rates. Our results indicate that levodopa may have opposing effects on oculomotor response inhibition dependent on the age at PD onset and motor disease severity. Assuming less dopaminergic loss in ventral parts of the striatum in early compared to late onset PD, these findings support the dopamine overdose hypothesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropsychologia.2021.108082DOI Listing

Publication Analysis

Top Keywords

response inhibition
16
levodopa intake
16
dopamine overdose
12
overdose hypothesis
12
antisaccade performance
12
age onset
12
parkinson's disease
8
disease onset
8
support dopamine
8
antisaccade task
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

AC Immune SA, Lausanne, Switzerland.

Background: The key advantage of active immunization is the induction of sustained, polyclonal antibody responses that are readily boosted by occasional immunizations. Recent clinical trial outcomes for monoclonal antibodies lecanemab and donanemab, establish the relevance of targeting pathological Abeta for clearing amyloid plaques in Alzheimer's disease. ACI-24.

View Article and Find Full Text PDF

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.

View Article and Find Full Text PDF

Background: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer's disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Cardiff University, Cardiff, United Kingdom.

Background: Neuroinflammation is a critical factor of Alzheimer's Disease (AD). Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury. This is likely of particular relevance in the brain where inflammation is poorly tolerated and brain cells are vulnerable to direct damage by complement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!