RNA-seq identifies long non-coding RNAs as potential therapeutic targets for human corneal endothelial dysfunction under oxidative stress.

Exp Eye Res

Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China. Electronic address:

Published: December 2021

Human corneal endothelial cells (CECs) have limited ability to regenerate in vivo. Oxidative stress has been proposed as one potential reason. Understanding the mechanism of oxidative stress-induced CEC dysfunction might provide novel targets for improving CEC regenerative capacity, and help develop non-surgical therapeutic strategies for CEC dysfunction. Long non-coding RNAs (lncRNAs) are non-coding transcripts with multiple biological functions. The roles of lncRNAs in ocular cells under oxidative stress have been widely studied, such as lens epithelial cells, trabecular meshwork cells, and retinal ganglion cells. In the current study, we established oxidative stress-induced CEC dysfunction model in vitro. By RNA sequencing technology, we identified 824 differentially expressed lncRNAs in CEC dysfunction group, including 667 upregulated lncRNAs and 157 downregulated lncRNAs. We finally demonstrated that CEC functions under oxidative stress, including cellular proliferation, apoptosis, and anti-oxidative stress ability, could be regulated by different lncRNAs, including lncRNA-Z93241.1, lncRNA-XLOC_000818, and lncRNA-AC007952.4. Targeting these lncRNAs might be useful to further elucidate the pathology of CEC dysfunction and develop novel therapeutic strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2021.108820DOI Listing

Publication Analysis

Top Keywords

cec dysfunction
20
oxidative stress
16
long non-coding
8
non-coding rnas
8
human corneal
8
corneal endothelial
8
oxidative stress-induced
8
stress-induced cec
8
cec
7
lncrnas
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!