Polymer conjugation to biologics is of key interest to the pharmaceutical industry for the development of potent and long acting biotherapeutics, with poly(ethylene glycol) (PEG) being the gold standard. Within the last years, unwanted PEG-related side effects (immunological reactions, antibody formation) arose, therefore creating several attempts to establish alternative polymers with similar potential to PEG. In this article, we synthesized N-terminal bioconjugates of the potential therapeutic human interleukin-4 (hIL-4 WT) with linear polyglycerol (LPG) of 10 and 40 kDa and compared it with its PEG analogs of same nominal weights. Polyglycerol is a highly hydrophilic polymer with good biocompatibility and therefore represents an alternative polymer to PEG. Both polymer types resulted in similar conjugation yields, comparable hydrodynamic sizes and an unaltered secondary structure of the protein after modification. LPG- and PEG-bioconjugates remained stable in human plasma, whereas binding to human serum albumin (HSA) decreased after polymer modification. Furthermore, only minor differences in bioactivity were observed between LPG- and PEG-bioconjugates of same nominal weights. The presented findings are promising for future pharmacokinetic evaluation of hIL-4-polymer bioconjugates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2021.10.032 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany.
Therapeutic proteins are commonly conjugated with polymers to modulate their pharmacokinetics but often lack a description of the polymer-protein interaction. We deployed limited proteolysis mass spectrometry (LiP-MS) to reveal the interaction of polyethylene glycol (PEG) and PEG alternative polymers with interferon-α2a (IFN). Target conjugates were digested with the specific protease trypsin and a "heavy" N-IFN wild type (IFN-WT) for time-resolved quantification of the cleavage dynamics.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
In this study, a novel phenomenon is identified where precise control of topology and generation of polyglycerol induce the retention of Na ions in biological buffer systems, effectively inhibiting ice crystal growth during cryopreservation. Unlike linear and hyperbranched counterparts, densely-packed hydroxyl and ether groups in 4th-generation dendritic polyglycerol interact with the ions, activating the formation of hydrogen bonding at the ice interface. By inhibiting both intra- and extracellular ice growth and recrystallization, this biocompatible dendritic polyglycerol proves highly effective as a cryoprotectant; hence, achieving the cell recovery rates of ≈134-147%, relative to those of 10% dimethyl sulfoxide, which is a conventional cryoprotectant for human tongue squamous carcinoma (HSC-3) cell line and human umbilical vein endothelial (HUVEC) cells.
View Article and Find Full Text PDFDrug Deliv Transl Res
December 2024
Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA.
Poly(glycerol sebacate) (PGS) is a biodegradable, elastomeric polymer that has been explored for applications including tissue engineering, drug delivery, and wound repair. Despite its promise, its biomedical utility is limited by its rapid, and largely fixed, degradation rate. Additionally, its preparation requires prolonged curing at high temperatures, rendering it incompatible with heat-sensitive molecules, complex device geometries, and high-throughput production.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
Herein, we present a significant advancement in long-term cryopreservation techniques for microalgae species using a combination of linear polyglycerol (PG) and dimethyl sulfoxide (DMSO). The technique was tested on three species: , , and , which showed long-term viability and recovery rates superior to those when treated with a traditional cryoprotectant only. While DMSO alone enabled high cell recovery rates for all species after 1 week of cryopreservation, the rates for some of them dropped below 50% after 26 weeks of cryopreservation.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2024
Donostia International Physics Center (DIPC), Paseo Manuel Lardizábal 4, Donostia-San Sebastián, 20018, Spain.
In the present study, low molecular weight cyclic polyglycidol is used as a macroinitiator for hypergrafting glycidol and producing cyclic graft hyperbranched polyglycerol (cPG-g-hbPG) in the molecular weight range of 10-10 g mol. Linear graft hyperbranched polyglycerol (linPG-g-hbPG) and hyperbranched polyglycerol (hbPG) are prepared as reference samples. This creates a family of hbPG structures with cyclic, linear, and star cores, allowing to evaluate their properties in solution and in bulk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!