New integrative approaches to discovery of pathophysiological mechanisms triggered by night shift work.

Chronobiol Int

Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.

Published: February 2022

Synchronization to periodic cues such as food/water availability and light/dark cycles is crucial for living organisms' homeostasis. Both factors have been heavily influenced by human activity, with artificial light at night (ALAN) being an evolutionary challenge imposed over roughly the last century. Evidence from studies in humans and animal models shows that overt circadian misalignment, such as that imposed to about 20% of the workforce by night shift work (NSW), negatively impinges on the internal temporal order of endocrinology, physiology, metabolism, and behavior. Moreover, NSW is often associated to mistimed feeding, with both unnatural behaviors being known to increase the risk of chronic diseases, such as eating disorders, overweight, obesity, cardiovascular, metabolic (particularly type 2 diabetes mellitus) and gastrointestinal disorders, some types of cancer, as well as mental disease including sleep disturbances, cognitive disorders, and depression. Regarding deleterious effects of ALAN on reproduction, increased risk of miscarriage, preterm delivery and low birth weight have been reported in shift-worker women. These mounting lines of evidence prompt further efforts to advance our understanding of the effects of long-term NSW on health. Emerging data suggest that NSW with or without mistimed feeding modify gene expression and functional readouts in different tissues/organs, which seem to translate into persistent cardiometabolic and endocrine dysfunction. However, this research avenue still faces multiple challenges, such as functional characterization of new experimental models more closely resembling human long-term NSW and mistimed feeding in males versus females; studying further target organs; identifying molecular changes by means of deep multi-omics analyses; and exploring biomarkers of NSW with translational medicine potential. Using high-throughput and systems biology is a relatively new approach to study NSW, aimed to generate experiments addressing new biological factors, pathways, and mechanisms, going beyond the boundaries of the circadian clock molecular machinery.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07420528.2021.1994984DOI Listing

Publication Analysis

Top Keywords

mistimed feeding
12
night shift
8
shift work
8
long-term nsw
8
nsw mistimed
8
nsw
7
integrative approaches
4
approaches discovery
4
discovery pathophysiological
4
pathophysiological mechanisms
4

Similar Publications

The hepatic clock synergizes with HIF-1α to regulate nucleotide availability during liver damage repair.

Nat Metab

January 2025

State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.

Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance.

View Article and Find Full Text PDF

Chronic mistimed feeding results in renal fibrosis and disrupted circadian blood pressure rhythms.

Am J Physiol Renal Physiol

November 2024

Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States.

Circadian disruption is a disturbance in biological timing, which can occur within or between different organizational levels, ranging from molecular rhythms within specific cells to the misalignment of behavioral and environmental cycles. Previous work from our group showed that less than 1 wk of food restriction to the light (inactive) period is sufficient to invert diurnal blood pressure rhythms in mice. However, kidney excretory rhythms and functions remained aligned with the light-dark cycle.

View Article and Find Full Text PDF

Breastfeeding is the most appropriate source of a newborn's nutrition; among the plethora of its benefits, its modulation of circadian rhythmicity with melatonin as a potential neuroendocrine transducer has gained increasing interest. Transplacental transfer assures melatonin provision for the fetus, who is devoid of melatonin secretion. Even after birth, the neonatal pineal gland is not able to produce melatonin rhythmically for several months (with an even more prolonged deficiency following preterm birth).

View Article and Find Full Text PDF

Circadian desynchrony and glucose metabolism.

J Pineal Res

May 2024

Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes.

View Article and Find Full Text PDF

Astrocytic insulin receptor controls circadian behavior via dopamine signaling in a sexually dimorphic manner.

Nat Commun

December 2023

Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.

Mammalian circadian clocks respond to feeding and light cues, adjusting internal rhythms with day/night cycles. Astrocytes serve as circadian timekeepers, driving daily physiological rhythms; however, it's unknown how they ensure precise cycle-to-cycle rhythmicity. This is critical for understanding why mistimed or erratic feeding, as in shift work, disrupts circadian physiology- a condition linked to type 2 diabetes and obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!