Medically important arboviruses such as dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) are primarily transmitted by the globally distributed mosquito Aedes aegypti. Increasing evidence suggests that the transmission of some viruses can be influenced by mosquito-specific and mosquito-borne viruses. Advancements in high-throughput sequencing (HTS) and bioinformatics have expanded our knowledge on the richness of viruses harbored by mosquitoes. HTS was used to characterize the presence of virus sequences in wild-caught adult Ae. aegypti from Tocantins (TO) state, Brazil. Samples of mosquitoes were collected in four cities of Tocantins state and submitted to RNA isolation, followed by sequencing at an Illumina HiSeq platform. Our results showed initially by Krona the presence of 3% of the sequenced reads belonging to the viral database. After further analysis, the virus sequences were found to have homology to two viral families found in insects Phenuiviridae and Metaviridae. Three possible viral strains including putative new viruses were detected and named Phasi Charoen-like phasivirus isolate To-1 (PCLV To-1), Aedes aegypti To virus 1 (AAToV1), and Aedes aegypti To virus 2 (AAToV2). The results presented in this work contribute to the growing knowledge about the diversity of viruses in mosquitoes and might be useful for future studies on the interaction between insect-specific viruses and arboviruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8882499PMC
http://dx.doi.org/10.1007/s42770-021-00632-xDOI Listing

Publication Analysis

Top Keywords

aedes aegypti
16
tocantins state
12
state brazil
8
virus sequences
8
aegypti virus
8
viruses
7
virus
7
aegypti
5
identification potential
4
potential mosquito-associated
4

Similar Publications

mosquitoes are vectors of several viruses of major public health importance, and many new control strategies target mating behaviour. Mating in this species occurs in swarms characterised by male scramble competition and female choice. These mating swarms have a male-biased operational sex ratio, which is expected to generate intense competition among males for mating opportunities.

View Article and Find Full Text PDF

Embryonic dormancy in Aedes aegypti and Aedes albopictus (Diptera: Culicidae): a survival and dispersal mechanism.

J Vector Borne Dis

October 2024

Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia, Laboratório de Parasitologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brasil.

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as dengue, Zika virus, and chikungunya. Ae. aegypti is a widely spread mosquito in tropical and subtropical regions, whereas Ae.

View Article and Find Full Text PDF

The mosquito species Aedes aegypti (Linneaus) is the vector of multiple arboviruses, including dengue, Chikungunya, Zika, and yellow fever. Risk of infections associated with these arboviruses continues to expand as the geographical range of Ae. aegypti extends into temperate regions.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is mainly transmitted by the invasive mosquito () in tropical and subtropical regions worldwide. However, genetic adaptations of the virus to the peri domestic mosquito vector () has resulted in enhanced vector competence and associated epidemics and may contribute to further geographic expansion of CHIKV. However, evidence-based data on the relative role of in CHIKV transmission dynamics are scarce, especially in regions where is the main vector, such as in Brazil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!