Purpose: The amount of ultrasound (US) breast examinations continues to grow rapidly because of the wider endorsement of breast cancer screening programs. Cysts are the most commonly diagnosed breast lesions. Atypical breast cysts can be a serious differentiation problem in the US. Our goal was to develop noninvasive automated US grayscale image analysis for the cystic and solid breast lesion differentiation based on mathematical image post-processing.
Materials And Methods: We used a set of 217 ultrasound images of proven 107 cystic (including 53 atypical) and 110 solid lesions. Empirical statistical and morphological models of the lesions were used to obtain features. The AUC indicator and Student's t test were used to assess the quality of the individual features. The Pearson correlation matrix was used to calculate the correlation between various features. The LASSO and stepwise regression methods were used to determine the most significant features. Finally, the lesion classification was carried out by the various methods.
Results: The use of LASSO regression for the feature selection made it possible to select the most significant features for classification. The sensitivity increased from 87.1% to 89.2% and the specificity-from 92.2 to 94.8%. After the correlation matrix construction, it was found that features with a high value of the correlation coefficient (0.72; 0.75) can also be used to improve the quality of the classification.
Conclusion: The construction of the empirical model of the lesion pixels brightness behavior can provide parameters that are important for the correct classification of ultrasound images. The optimal set of features with the maximum discriminant characteristics may not be consistent with the correlation of features and the value of the AUC index. Features with a low AUC index (in our case 0.72) can also be important for improving the quality of the classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-021-02522-x | DOI Listing |
Crit Care
January 2025
Department of Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background And Objectives: Antibody-negative autoimmune encephalitis (AE) is a form of encephalitis characterized by the absence of detectable autoimmune antibodies, despite immunological evidence. However, data on management of patients with antibody-negative AE in the intensive care unit (ICU) are limited. This study aimed to explore the characteristics and subtypes of antibody-negative AE, assess the effects of immunotherapy, and identify factors independently associated with poor functional outcomes in patients requiring intensive care.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Institute of Cancer Research, London, UK.
Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Kenya Medical Research Institute- Center for Global Health Research (KEMRI-CGHR), P.O Box 1578-40100, Kisumu, Kenya.
Background: Despite the adverse health outcomes associated with longer duration diarrhea (LDD), there are currently no clinical decision tools for timely identification and better management of children with increased risk. This study utilizes machine learning (ML) to derive and validate a predictive model for LDD among children presenting with diarrhea to health facilities.
Methods: LDD was defined as a diarrhea episode lasting ≥ 7 days.
BioData Min
January 2025
Department of Computer Science, Hanyang University, Seoul, Republic of Korea.
Background: Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!