A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Allometric equations for selected Acacia species (Vachellia and Senegalia genera) of Ethiopia. | LitMetric

Allometric equations for selected Acacia species (Vachellia and Senegalia genera) of Ethiopia.

Carbon Balance Manag

Center for Environmental Science, College of Computational and Natural Science, Addis Ababa University, P. O. Box No: 1176, Addis Ababa, Ethiopia.

Published: November 2021

Background: Allometric equations are used to estimate biomass and carbon stock of forests. In Ethiopia, despite the presence of large floral diversity, only a few site-specific allometric equations have been developed so far. This study was conducted in the Omo-Gibe woodland of south-western Ethiopia to develop an allometric equation to estimate the Above-ground Biomass (AGB) of the four Acacia species (Senegalia polyacantha, Vachellia seyal, Vachellia etbaica and Vachellia tortilis). Fifty-four (54) Acacia trees were sampled and measured within 35 temporarily established square plots. In each plot, dendrometric variables were measured to derive the models based on combinations of Diameter at Breast Height (DBH), height, and wood density as predictor variables. Model performance was evaluated using goodness-of-fit statistics. The biomass was compared using four allometric biomass models that have been widely used in the tropics.

Results: The model containing DBH alone was more accurate to estimate AGB compared to the use of multiple predictor variables. This study, therefore, substantiated the importance of site-specific allometric equations in estimating the AGB of Acacia woodlands. This is because a site-specific allometric equation recognizes the environmental factors, vegetation types and management practices.

Conclusions: The results of this study contribute to a better understanding of allometric equations and an accurate estimate of AGB of Acacia woodlands in Ethiopia and similar ecosystems elsewhere.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561847PMC
http://dx.doi.org/10.1186/s13021-021-00196-1DOI Listing

Publication Analysis

Top Keywords

allometric equations
20
site-specific allometric
12
agb acacia
12
allometric
8
acacia species
8
allometric equation
8
predictor variables
8
accurate estimate
8
estimate agb
8
acacia woodlands
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!