The time course of the neuronal activity in the brain network, the neurodynamics, reflects the structure and functionality of the generating neuronal pools. Here, using the intracranial stereo-electroencephalographic (sEEG) recordings of the public Montreal Neurological Institute (MNI) atlas, we investigated the neurodynamics of primary motor (M1), somatosensory (S1) and auditory (A1) cortices measuring power spectral densities (PSD) and Higuchi fractal dimension (HFD) in the same subject (M1 vs. S1 in 16 subjects, M1 vs. A1 in 9, S1 vs. A1 in 6). We observed specific spectral features in M1, which prevailed above beta band, S1 in the alpha band, and A1 in the delta band. M1 HFD was higher than S1, both higher than A1. A clear distinction of neurodynamics properties of specific primary cortices supports the efforts in cortical parceling based on this expression of the local cytoarchitecture and connectivity. In this perspective, we selected within the MNI intracortical database a first set of primary motor, somatosensory and auditory cortices' representatives to query in recognizing ongoing patterns of neuronal communication. Potential clinical impact stands primarily in exploiting such exchange patterns to enhance the efficacy of neuromodulation intervention to cure symptoms secondary to neuronal activity unbalances.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhab389DOI Listing

Publication Analysis

Top Keywords

neuronal activity
8
primary motor
8
motor somatosensory
8
somatosensory auditory
8
neuronal
5
neuronal electrical
4
electrical ongoing
4
ongoing activity
4
activity cortical
4
cortical areas
4

Similar Publications

Cyclovirobuxine D, a natural compound derived from the medicinal plant Buxus sinica, demonstrates a diverse array of therapeutic benefits, encompassing anti-arrhythmic properties, blood pressure regulation, neuronal protection, and anti-ischemic activity. However, its limited solubility hinders the bioavailability of current oral and injectable formulations, causing considerable adverse reactions and toxicity. In this investigation, we embarked on an unprecedented exploration of the skin penetration potential of cyclovirobuxine D utilizing chemical penetration enhancers and niosomes as innovative strategies to enhance its dermal absorption.

View Article and Find Full Text PDF

Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles.

Pharmaceutics

November 2024

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS.

View Article and Find Full Text PDF

The Interaction of Histamine H and Dopamine D Receptors on Hyperkinetic Alterations in Animal Models of Parkinson's Disease.

Pharmaceuticals (Basel)

December 2024

División de Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico.

Parkinson's disease is associated with the loss of more than 40% of dopaminergic neurons in the substantia nigra pars compacta. One of the therapeutic options for restoring striatal dopamine levels is the administration of L-3,4-dihydroxyphenylalanine (L-Dopa). However, Parkinson's disease patients on long-term L-Dopa therapy often experience motor complications, such as dyskinesias.

View Article and Find Full Text PDF

Small Molecules in Parkinson's Disease Therapy: From Dopamine Pathways to New Emerging Targets.

Pharmaceuticals (Basel)

December 2024

BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea.

Parkinson's disease (PD) is a chronic, progressive neurological disorder affecting approximately 10 million people worldwide, with prevalence expected to rise as the global population ages. It is characterized by the degeneration of dopamine-producing neurons in the substantia nigra pars compacta, leading to motor symptoms such as tremor, rigidity, bradykinesia, postural instability, and gait disturbances, as well as non-motor symptoms including olfactory disturbances, sleep disorders, and depression. Currently, no cure exists for PD, and most available therapies focus on symptom alleviation.

View Article and Find Full Text PDF

(L.) Urban (family Apiaceae) () is a traditional botanical medicine used in aging and dementia. Water extracts of (CAW) have been used to treat neuropsychiatric symptoms in related animal models and are associated with increases in antioxidant response element (ARE) genes and improvements in mitochondrial respiratory function and neuronal health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!