Dengue virus (DENV) and Zika virus (ZIKV) belong to the same viral family, the Flaviviridae. They cause recurring threats to the public health systems of tropical countries such as Brazil. The primary Brazilian vector of both viruses is the mosquito Aedes aegypti. After the mosquito ingests a blood meal from an infected person, the viruses infect and replicate in the midgut, disseminate to secondary tissues and reach the salivary gland (SG), where they are ready to be transmitted to a vertebrate host. It is thought that the intrinsic discrepancies among mosquitoes could affect their ability to deal with viral infections. This study confirms that the DENV and ZIKV infection patterns of nine Ae. aegypti field populations found in geographically separate health districts of an endemic Brazilian city vary. We analyzed the infection rate, disseminated infection, vector competence, and viral load through quantitative PCR. Mosquitoes were challenged using the membrane-feeding assay technique and were tested seven and fourteen days post-infection (early and late infection phases, respectively). The infection responses varied among the Ae. aegypti populations for both flaviviruses in the two infection phases. There was no similarity between DENV and ZIKV vector competencies or viral loads. According to the results of our study, the risk of viral transmission overtime after infection either increases or remains unaltered in ZIKV infected vectors. However, the risk may increase, decrease, or remain unaltered in DENV-infected vectors depending on the mosquito population. For both flaviviruses, the viral load persisted in the body even until the late infection phase. In contrast to DENV, the ZIKV accumulated in the SG over time in all the mosquito populations. These findings are novel and may help direct the development of control strategies to fight dengue and Zika outbreaks in endemic regions, and provide a warning about the importance of understanding mosquito responses to arboviral infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562804PMC
http://dx.doi.org/10.1371/journal.pntd.0009839DOI Listing

Publication Analysis

Top Keywords

denv zikv
12
infection
9
dengue zika
8
zika virus
8
infection patterns
8
aedes aegypti
8
aegypti field
8
field populations
8
viral load
8
late infection
8

Similar Publications

Simultaneous Blockade of CD209 and CD209L by Monoclonal Antibody Does Not Provide Sufficient Protection Against Multiple Viral Infections In Vivo.

Immunology

January 2025

The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Many virus species, including Ebola virus, Marburg virus, SARS-CoV-2, dengue virus (DENV) and Zika virus (ZIKV), exploit CD209 and CD209L as alternative or attachment receptors for viral cis- or trans-infection. Thus, CD209 and CD209L may be critical targets for the development of therapeutic monoclonal blocking antibody drugs to disrupt the infection process caused by multiple viruses. Here, we produced a human chimeric monoclonal blocking antibody that simultaneously blocks CD209 and CD209L, namely 7-H7-B1.

View Article and Find Full Text PDF

Zika virus (ZIKV) and dengue virus (DENV) are two major mosquito-borne flaviviruses that pose a significant threat to the global public health system, particularly in tropical regions. The clinical outcomes related to these viral pathogens can vary from self-limiting asymptomatic infections to various forms of life-threatening pathological conditions such as haemorrhagic disorders. In addition to the direct effects of the viral pathogens, immune processes play also a significant function in the development of diseases mediated by ZIKV and DENV.

View Article and Find Full Text PDF

A low pre-existing anti-NS1 humoral immunity to DENV is associated with microcephaly development after gestational ZIKV exposure.

PLoS Negl Trop Dis

January 2025

División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia.

Background: Gestational Zika virus (ZIKV) infection is associated with the development of congenital Zika syndrome (CZS), which includes microcephaly and fetal demise. The magnitude and quality of orthoflavivirus-specific humoral immunity have been previously linked to the development of CZS. However, the role of ZIKV NS1-specific humoral immunity in mothers and children with prenatal ZIKV exposure and CZS remains undefined.

View Article and Find Full Text PDF

Flaviviruses utilize the cellular endoplasmic reticulum (ER) for all aspects of their lifecycle. Genome replication and other viral activities take place in structures called replication organelles (ROs), which are invaginations induced in the ER membrane. Among the required elements for RO formation is the biogenesis of viral nonstructural proteins NS4A and NS4B.

View Article and Find Full Text PDF

Zika virus infections and associated risk factors among pregnant women in Gombe, Nigeria.

Virol Sin

December 2024

Department of Medical Laboratory Science, University of Maiduguri, College of Medical Sciences, P.M.B. 1069, Maiduguri, Nigeria. Electronic address:

Article Synopsis
  • In-utero exposure to Zika virus (ZIKV) can result in severe outcomes like miscarriage and congenital Zika syndrome, prompting a study on the infection rates among pregnant women from February to April 2022.
  • Researchers tested 200 pregnant women for ZIKV antibodies and found that 16.5% had ZIKV IgM, 10% had IgG, and 23% had neutralizing antibodies, indicating various stages of infection and immunity.
  • The study also revealed that recent ZIKV infections were more common in sexually active women aged 20-29, with higher infection risks in first trimester and grand-multiparous women, although no significant link was found between ZIKV and specific pregnancy trimest
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!