Objective: Currently available ventricular assist devices provide continuous flow and do not adapt to the changing needs of patients. Physiological control algorithms have been proposed that adapt the pump speed based on the left ventricular pressure. However, so far, no clinically used pump can acquire this pressure. Therefore, for the validation of physiological control concepts in vivo, a system that can continuously and accurately provide the left ventricular pressure signal is needed.

Methods: We demonstrate the integration of two pressure sensors into a tapered inflow cannula compatible with the HeartMate 3 (HM3) ventricular assist device. Selective laser melting was used to incorporate functional elements with a small footprint and therefore retain the geometry, function and implantability of the original cannula. The system was tested on a hybrid mock circulation system. Static and simulated physiological flow and pressure profiles were used to evaluate the combined pressure and flow sensing capabilities of the modified cannula.

Results: The cannula prototypes enabled continuous pressure measurements at two points of their inner wall in the range of -100 and 200 mmHg. The developed, Bernoulli-based, two sensor model improved the accuracy of the measured simulated left ventricular pressure by eliminating the influence of flow inside the cannula. This method reduced the flow induced pressure uncertainty from up to 7.6 mmHg in single sensor measurements to 0.3 mmHg. Additionally, the two-sensor system and model enable the measurement of the blood flow through the pump with an accuracy of -0.14 ± 0.04 L/min, without dedicated flow sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2021.3123983DOI Listing

Publication Analysis

Top Keywords

left ventricular
12
ventricular pressure
12
pressure
10
flow
8
tapered inflow
8
ventricular assist
8
physiological control
8
cannula
5
ventricular
5
pressure bernoulli-based
4

Similar Publications

Importance: Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence-enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension.

View Article and Find Full Text PDF

Systolic Blood Pressure and Pulse Pressure in Heart Failure: Pooled Participant-Level Analysis of 4 Trials.

J Am Coll Cardiol

November 2024

Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:

Background: Hypertension is common in patients with heart failure with mildly reduced or preserved ejection fraction (HFmrEF/HFpEF), and current guidelines recommend treating systolic blood pressure (SBP) to a target <130 mm Hg. However, data supporting treatment to this target are limited. Additionally, pulse pressure (PP), a marker of aortic stiffness, has been associated with increased risk of cardiovascular events, but its prognostic impact in HFpEF has not been extensively studied.

View Article and Find Full Text PDF

Cardiac MRI Evaluation of Determinants and Prognostic Implications of Right Ventricular Dysfunction in Aortic Regurgitation.

Radiol Cardiothorac Imaging

February 2025

From the Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin St, Smith Tower, Ste 1801, Houston, TX 77030 (M.M., P.B., V.C., M.S., M.R., S.F.N., W.A.Z., D.J.S.); and Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, Tex (D.T.N., E.A.G.).

Purpose To investigate the determinants and effect of right ventricular (RV) dysfunction in aortic regurgitation (AR) using cardiac MRI. Materials and Methods This study included patients with moderate or severe AR who were enrolled in the DEBAKEY-CMR registry between January 2009 and June 2020. Patients with previous valve intervention, cardiomyopathy deemed unrelated to AR, severe aortic stenosis, and other confounders were excluded.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) is a common treatment for severe aortic stenosis (AS), but it carries the risk of severe complications, including device embolization. We present a case of a TAVR valve embolization into the left ventricular outflow tract (LVOT), diagnosed with transesophageal echocardiography (TEE) shortly after device deployment. The dislodged valve was successfully retrieved from the LVOT into the aorta, flattened, and stabilized with a thoracic endovascular aneurysm repair (TEVAR) stent, enabling the successful implantation of a new TAVR valve.

View Article and Find Full Text PDF

Introduction: Moderate to severe tricuspid regurgitation (TR) in the setting of acute heart failure (AHF) has been found to be associated with worse clinical outcomes. Recently, the TRI-SCORE was developed to predict clinical outcomes after isolated tricuspid surgery.

Objectives: To determine whether this score could aid in risk stratification of AHF patients with moderate-severe TR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!