The main edible and cultivated banana varieties are intra- and interspecific hybrids of the two main species, and , having diploid genomes denoted A and B, respectively. The B genome naturally hosts sequences of banana streak virus (BSV) named endogenous BSV (eBSV). Upon stress, eBSVs are identified as the origin of BSV infection for at least three BSV species, causing banana streak disease. For each of the three species, BSV and eBSV share >99.9 % sequence identity, complicating PCR-based diagnosis of viral infection in the B genome-containing bananas. Here, we designed a quantitative PCR-based method to only quantify episomal BSV particles produced, overcoming the limitation of eBSV also being detected by qPCR by using it as a 'calibrator'. However, our results revealed unexpected variation of eBSV amplification in calibrator plants composed of a clonal population of 53 replicating virus-free banana hybrids with the same AAB genotype. Our in-depth molecular analyses suggest that this calibrator variation is due to the variable abundance of non-encapsidated extrachromosomal viral DNA, likely produced via the transcription of eBSVs, followed by occasional reverse transcription. We also present evidence that accumulation of viral transcripts in AAB plants is downregulated both at post-transcriptional and transcriptional levels by an RNA interference mechanism that keeps the plants free of virus infection. Finally, we recommend that such eBSV amplification variation be taken into account to establish a quantitative viral diagnostic for banana plants with the B genome.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.001670DOI Listing

Publication Analysis

Top Keywords

banana hybrids
12
banana streak
12
extrachromosomal viral
8
viral dna
8
dna produced
8
banana
8
streak virus
8
hybrids main
8
bsv ebsv
8
ebsv amplification
8

Similar Publications

Hybridization between wild Musa species and subspecies from Southeast Asia is at the origin of cultivated bananas. The genomes of these cultivars are complex mosaics involving nine genetic groups, including two previously unknown contributors. This study provides continuous genome assemblies for six wild genetic groups, one of which represents one of the unknown ancestor, identified as M.

View Article and Find Full Text PDF

Barcoded Hybrids of Extracellular Vesicles and Lipid Nanoparticles for Multiplexed Analysis of Tissue Distribution.

Adv Sci (Weinh)

January 2025

Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 43150, Sweden.

Targeted delivery of therapeutic agents is a persistent challenge in modern medicine. Recent efforts in this area have highlighted the utility of extracellular vesicles (EVs) as drug carriers, given that they naturally occur in bloodstream and tissues, and can be loaded with a wide range of therapeutic molecules. However, biodistribution and tissue tropism of EVs remain difficult to study systematically.

View Article and Find Full Text PDF

Wind energy assessment and hybrid micro-grid optimization for selected regions of Saudi Arabia.

Sci Rep

January 2025

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

This study investigates the optimization of wind energy integration in hybrid micro grids (MGs) to address the rising demand for renewable energy, particularly in regions with limited wind potential. A comprehensive assessment of wind energy potential was conducted, and optimal sizing of standalone MGs incorporating photovoltaic (PV) systems, wind turbines (WT), and battery storage (BS) systems was performed for six regions in the Kingdom Saudi Arabia. Wind resource analysis utilizing the Weibull distribution function shows that all regions exhibited Class 1 wind energy characteristics, with average annual wind power densities ranging from 36.

View Article and Find Full Text PDF

This work aimed to evaluate the relative gene expression of the candidate genes , , , , and involved in the defense response to Black Sigatoka in banana cultivars Calcutta-4, Krasan Saichon, Grand Nain, and Akondro Mainty, by a quantitative real-time PCR. Biotic stress was imposed on 6-month-old plants during five sampling intervals under greenhouse conditions. The and genes were upregulated for the Calcutta-4- and Krasan Saichon-resistant cultivars, and were validated in this study.

View Article and Find Full Text PDF
Article Synopsis
  • Banana breeding involves creating hybrids with varying ploidy levels (diploid, triploid, tetraploid) to enhance desirable traits and increase genetic diversity in bananas, focusing on resistance to diseases like yellow and black Sigatoka and Fusarium wilt.
  • Embrapa's Banana Genetic Breeding Program aims to cross improved diploids with commercial triploids to boost both genetic variability and agronomic performance.
  • A genetic diversity study using DNA markers identified key improved diploid genotypes for breeding, revealing significant genetic differences that can guide effective crossings to maintain beneficial traits in commercial banana varieties.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!