Optimization of Nanostructured Copper Sulfide to Achieve Enhanced Enzyme-Mimic Activities for Improving Anti-Infection Performance.

ACS Appl Mater Interfaces

The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.

Published: November 2021

Advanced antibacterial methods are urgently needed to deal with possible infectious diseases. As promising alternatives to antibiotics, enzyme-mimic nanocatalysts face bottlenecks of low activities and indistinct catalytic mechanisms, which seriously restrict their development for anti-infection treatment. Herein, metastable copper sulfide (CuS) nanozymes with diversiform sizes and compositions were selected to adjust the electronic structure for enhancing enzyme-mimic activities. The as-synthesized large and thin nanoplates (L/TN nanoplates), with the stoichiometric ratio of CuS, were proven to possess the optimal peroxidase (POD)-mimic activity. Using quantum mechanics, it was theoretically revealed that the sulfur vacancies could alter the electronic structure of copper active sites and thus reduce the reaction energy barrier of HO to·OH to promote the POD-mimic performance. Moreover, through enhanced enzyme-mimic activities, L/TN nanoplates achieved efficient depletion of glutathione and ascorbic acid for improving antibacterial performances. Further, synergizing with the NIR irradiation, the satisfactory destruction capability for bacteria and biofilm was achieved for L/TN nanoplates under an inflammatory level of hydrogen peroxide (50 μM). Altogether, this work provides a deeper understanding of geometrical and electronic properties-dependent antibacterial performance, and paves the way toward precise compositions and structures engineering of nanozymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c17985DOI Listing

Publication Analysis

Top Keywords

enzyme-mimic activities
12
l/tn nanoplates
12
copper sulfide
8
enhanced enzyme-mimic
8
electronic structure
8
optimization nanostructured
4
nanostructured copper
4
sulfide achieve
4
achieve enhanced
4
enzyme-mimic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!