High permittivity materials for a gigahertz (GHz) communication technology have been actively sought for some time. Unfortunately, in most materials, the dielectric constant starts to drop as frequencies increase through the megahertz (MHz) range. In this work, we report a large dielectric constant of ∼800 observed in defect-mediated rutile SnO ceramics, which is nearly frequency and temperature independent over the frequency range of 1 mHz to 35 GHz and temperature range of 50-450 K. Experimental and theoretical investigations demonstrate that the origin of the high dielectric constant can be attributed to the formation of locally well-defined Zn-Nb defect clusters, which create hole-pinned defect dipoles. We believe that this work provides a promising strategy to advance dipole polarization theory and opens up a direction for the design and development of high frequency, broadband dielectric materials for use in future communication technology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c09632DOI Listing

Publication Analysis

Top Keywords

dielectric constant
16
hole-pinned defect
8
defect clusters
8
large dielectric
8
rutile sno
8
communication technology
8
dielectric
5
clusters large
4
constant
4
constant ghz
4

Similar Publications

Soil bacterial communities are crucial to various ecosystem services, with significant implications for environmental processes and human health. Delivering functional bacterial strains to target locations enhances the preferred ecological features. However, the delivery process is often constrained by limited bacterial transport through low-permeability soil.

View Article and Find Full Text PDF

TiCT MXene Thin Films and Intercalated Species Characterized by IR-to-UV Broadband Ellipsometry.

J Phys Chem C Nanomater Interfaces

January 2025

Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.

MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.

View Article and Find Full Text PDF

Silicon (Si) is considered a promising anode material for next-generation lithium-ion batteries due to its high theoretical specific capacity and earth-abundancy. However, challenges such as significant volume expansion, unstable solid electrolyte interphase (SEI) formation in incompatible electrolytes, and slow lithium-ion transport lead to its poor cycling and rate performance. In this work, it is demonstrated that superior cyclability and rate capability of Si anodes can be achieved using ethyl fluoroacetate (EFA) and fluoroethylene carbonate (FEC) solvents with low binding energy with Li but with sufficiently high relative dielectric constants.

View Article and Find Full Text PDF

Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant.

Mater Horiz

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.

Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.

View Article and Find Full Text PDF

Correlation of Phase Structure, Defect Relaxation, and Microwave Dielectric Properties in Low-Loss MgTiO Ceramic Systems.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Low-loss microwave dielectrics are of significant importance for the miniaturization and integration of microwave devices. In this paper, the ceramics of nominal composition MgTiO ( = 3-6) are synthesized, and the correlations among their phase compositions, defect behaviors, and microwave dielectric properties are systematically investigated. The analyses indicate that the MgTiO ceramics are a biphasic system consisting of hexagonal ilmenite-structured MgTiO and cubic spinel-structured MgTiO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!