Background: Epithelioid haemangioma (EH) arising from the skin is a benign vascular tumour with marked inflammatory cell infiltration, which exhibits a high tendency to persist and frequently recurs after resection. So far, the underlying pathogenesis is largely elusive.

Objectives: To identify genetic alterations by next-generation sequencing and/or droplet digital polymerase chain reaction (ddPCR) in cutaneous EH.

Methods: DNA and RNA from an EH lesion of an index patient were subjected to whole-genome and RNA sequencing. Multiplex PCR-based panel sequencing of genomic DNA isolated from archival formalin-fixed paraffin-embedded tissue of 18 patients with cutaneous EH was performed. ddPCR was used to confirm mutations.

Results: We identified somatic mutations in genes of the mitogen-activated protein kinase (MAPK) pathway (MAP2K1 and KRAS) in cutaneous EH biopsies. By ddPCR we could confirm the recurrent presence of activating, low-frequency mutations affecting MAP2K1. In total, nine out of 18 patients analysed showed activating MAPK pathway mutations, which were mutually exclusive. Comparative analysis of tissue areas enriched for lymphatic infiltrate or aberrant endothelial cells, respectively, revealed an association of these mutations with the presence of endothelial cells.

Conclusions: Taken together, our data suggest that EH shows somatic mutations in genes of the MAPK pathway which might contribute to the formation of this benign tumour.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjd.20869DOI Listing

Publication Analysis

Top Keywords

somatic mutations
12
mapk pathway
12
mitogen-activated protein
8
protein kinase
8
ddpcr confirm
8
mutations genes
8
mutations
6
cutaneous
4
cutaneous epithelioid
4
epithelioid haemangiomas
4

Similar Publications

An expanding universe of mutational signatures and its rapid evolution in single-stranded RNA viruses.

Mol Biol Evol

January 2025

Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

The study of mutational processes in somatic genomes has gained recent momentum, uncovering a wide array of endogenous and exogenous factors associated with somatic changes. However, the overall landscape of mutational processes in germline mutations across the tree of life and associated evolutionary driving forces are rather unclear. In this study, we analyzed mutational processes in single-stranded RNA (ssRNA) viruses which are known to jump between different hosts with divergent exogenous environments.

View Article and Find Full Text PDF

Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM, FPD/AML, -FPD), caused by monoallelic deleterious germline variants, is characterized by bleeding diathesis and predisposition for hematologic malignancies, particularly myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Clinical data on FPDMM-associated AML (FPDMM-AML) are limited, complicating evidence-based clinical decision-making. Here, we present retrospective genetic and clinical data of the largest cohort of FPDMM patients reported to date.

View Article and Find Full Text PDF

In vivo lineage tracing holds great potential to reveal fundamental principles of tissue development and homeostasis. However, current lineage tracing in humans relies on extremely rare somatic mutations, which has limited temporal resolution and lineage accuracy. Here, we developed a generic lineage-tracing tool based on frequent epimutations on DNA methylation, enabled by our computational method MethylTree.

View Article and Find Full Text PDF

VEXAS syndrome is a complex hemato-inflammatory disorder, driven by somatic mutations in the UBA1 gene within hematopoietic precursor cells. It is characterized by systemic inflammation, rheumatological manifestations, and frequent association with myelodysplastic syndrome (MDS). We present a series of four VEXAS cases, all of which include concomitant MDS, each displaying distinct genetic signatures and clinical features at diagnosis, with a focus on their diagnostic and therapeutic implications.

View Article and Find Full Text PDF

DNA methylation, catalyzed by DNA methyltransferases (DNMT), plays pivotal role in regulating embryonic development, gene expression, adaption to environmental stress, and maintaining genome integrity. DNMT family consists of DNMT1, DNMT3A, DNMT3B, and the enzymatically inactive DNMT3L. DNMT3A and DNMT3B establish novel methylation patterns maintained by DNMT1 during replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!