Environment-assisted fracture phenomena in metals are usually associated with surface energy reduction due to an adsorbed film. Here we demonstrate a unique embrittlement effect in Al that is instead mediated by surface stress, induced by an adsorbed organic monolayer. Atomistic simulations show that the adsorbate carbon-chain length controls the surface stress via van der Waals forces, being compressive for < 8 and tensile otherwise. For > 8, we demonstrate experimentally that the nanoscale film causes a ductile-to-brittle transition on the macroscale. Concomitant with this transition is a nearly 85% reduction in deformation forces. Additional simulations reveal that the microscopic mechanism for the embrittlement is via suppression of dislocation emission at incipient crack-tips. In addition to challenging long-held views on environment-assisted fracture, our findings pertaining to surface-stress induced embrittlement suggest profitable utility in manufacturing processes such as machining and comminution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c02887 | DOI Listing |
Ecotoxicol Environ Saf
December 2024
KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland. Electronic address:
The extensive use of plastics in modern dentistry, including oral care products and dental materials, has raised significant concerns due to the increasing evidence of potential harm to human health and the environment caused by the unintentional release of microplastics (MPs) and nanoplastics (NPs). Particles from sources like toothpaste, toothbrushes, orthodontic implants, and denture materials are generated through mechanical friction, pH changes, and thermal fluctuations. These processes cause surface stress, weaken material integrity, and induce wear, posing health risks such as exposure to harmful monomers and additives, while contributing to environmental contamination.
View Article and Find Full Text PDFbioRxiv
September 2024
Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892.
Small
November 2024
Department of Microelectronic Science and Engineering, Ningbo University, Ningbo, 315000, China.
Mixed tin-lead perovskite solar cells (PSCs) have garnered much attention for their ideal bandgap and high environmental research value. However, poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS), widely used as a hole transport layer (HTL) for Sn-Pb PSCs, results in unsatisfactory power conversion efficiency (PCE) and long-term stability of PSCs due to its acidity and moisture absorption. A synergistic strategy by incorporating histidine (HIS) into the PEDOT: PSS HTL is applied to simultaneously regulate the nucleation and crystallization of perovskite (PVK).
View Article and Find Full Text PDFLangmuir
August 2024
Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.
Nanoporous solids have high surface area, so processes at the surface affect the sample as a whole. When guest species adsorb in nanopores, be they molecules adsorbing from the gas phase, or ions adsorbing from solution, they cause material deformation. While often undesired, adsorption- or electrosorption-induced deformation provides a potential for nanoporous materials to be used as actuators.
View Article and Find Full Text PDFGenes (Basel)
June 2024
Ophthalmology Unit, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy.
The identification of new biomarkers of ocular diseases is nowadays of outmost importance both for early diagnosis and treatment. Epigenetics is a rapidly growing emerging area of research and its involvement in the pathophysiology of ocular disease and regulatory mechanisms is of undisputable importance for diagnostic purposes. Environmental changes may impact the ocular surface, and the knowledge of induced epigenetic changes might help to elucidate the mechanisms of ocular surface disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!