Cost-effective photoanodes with remarkable electronic properties are highly demanded for practical photoelectrochemical (PEC) water splitting. The ability to manipulate the surface carrier separation and recombination is pivotal for achieving high PEC performance for water splitting. Here, a facile and economical approach is reported for substantially improving the surface charge separation property of CdS photoanodes through in situ photoactivation, which significantly reduces surface charge recombination through the formation of thiosulfate ion which is favorable to the transfer of photogenerated holes and a uniform nanoporous morphology via the dissolving Cd with phosphate ions on the surface of CdS. The resulting CdS electrodes through scalable particle transfer method exhibit nearly tripled photocurrents, with an incident-photon-to-current conversion efficiency (IPCE) at 480 nm exceeding 80% at 0.6 V versus reversible hydrogen electrode (RHE). And the CdS thin films prepared from chemical bath deposition display quadrupled photocurrents after the stir and PEC activation, with an IPCE of 91.7% at 455 nm and 0.6 V versus RHE. With the suppression of photocorrosion in alkaline borate buffer, the activated photoanodes show great stability for solar hydrogen production at the sacrifice of sulfite. This work brings insights into the design of nanoporous metal sulfide semiconductors for solar water splitting.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202104307DOI Listing

Publication Analysis

Top Keywords

water splitting
12
situ photoactivation
8
cds photoanodes
8
surface charge
8
06 v versus
8
cds
5
general situ
4
photoactivation route
4
route ipce
4
ipce 80%
4

Similar Publications

Background: Central arterial stiffening is associated with brain white matter (WM) damage and gray matter (GM) volume loss in older adults, but little is known about this association from an adult lifespan perspective.

Purpose: To investigate the associations of central arterial stiffness with WM microstructural organization, WM lesion load, cortical thickness, and GM volume in healthy adults across the lifespan.

Study Type: This is a cross-sectional study.

View Article and Find Full Text PDF

Water electrolysis recognizes nickel foam (NF) as an effective current collector due to its excellent conductivity. However, recent studies highlighted NF's effect on the efficacy of various electrocatalytic reactions, primarily due to the presence of electroactive chemical species at its interface. In contrast, numerous reports suggested that NF has a negligible impact on overall electrocatalytic activity.

View Article and Find Full Text PDF

Graphitic Carbon Nitride for Photocatalytic Hydrogen Production from Water Splitting: Nano-Morphological Control and Electronic Band Tailoring.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Solidifcation Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Semiconductor polymeric graphitic carbon nitride (g-CN) photocatalysts have garnered significant and rapidly increasing interest in the realm of visible light-driven hydrogen evolution reactions. This interest stems from their straightforward synthesis, ease of functionalization, appealing electronic band structure, high physicochemical and thermal stability, and robust photocatalytic activity. This review starts with the basic principle of photocatalysis and the development history, synthetic strategy, and structural properties of g-CN materials, followed by the rational design and engineering of g-CN from the perspectives of nano-morphological control and electronic band tailoring.

View Article and Find Full Text PDF

Solar Light-Driven Efficient Degradation of Organic Pollutants Mediated by S-Scheme MoS@TiO-Layered Structures.

Nanomaterials (Basel)

December 2024

Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

This study focuses on achieving high photocatalytic activity using MoS/TiO heterostructures (MOT). To this end, MoS and TiO were synthesized by employing hydrothermal synthesis techniques, and then MoS/TiO heterostructures were synthesized by using 1:1, 1:2, 1:3, and 1:4 ratios of MoS and TiO, respectively. While the structural and electronic changes for the 1:2 and 1:3 ratios were relatively minor, significant modifications in bandgaps and morphology were observed for the 1:1 and 1:4 ratios.

View Article and Find Full Text PDF

Layered double hydroxide modified bismuth vanadate as an efficient photoanode for enhancing photoelectrochemical water splitting.

Mater Horiz

January 2025

Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.

Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!