Ruptures to tendons are common and costly, and no clinical consensus exists on the appropriate treatment and rehabilitation regimen to promote their healing as well as full recovery of functionality. Although mechanobiology is known to play an important role in tendon regeneration, the understanding of how mechano-regulated processes affect tendon healing needs further clarification. Many small-animal studies, particularly in rats and mice, have characterized the progression of healing in terms of geometrical, structural, compositional, mechanical, and cellular properties. Some of the properties are also studied under different mechanical loading regimens. The focus of this review is to summarize and generalize the information in the literature regarding spatial and temporal differentiation of tendon properties during rodent tendon healing following full-tendon transection, as well as how this is affected by altered in vivo loading regimens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.22203/eCM.v042a23 | DOI Listing |
Radiographics
February 2025
Department of Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, Canada K1H 8L6 (D.V.F., J.L.); Department of Radiology, Radiation Oncology and Medical Physics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (D.V.F., J.L.); Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (D.V.F., J.L.); and Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (T.M.).
Formerly termed or , core muscle injury (CMI) encompasses abnormality of structures within the so-called core, which is essentially the hip, abdomen, and pubis. Compared with data on image-guided procedures of other joints, information regarding procedures performed to address CMI and other disorders of the pubic symphysis is lacking. These procedures can be daunting given the joint's small size, surrounding critical neurovascular structures, and three-dimensional anatomy.
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.
The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
January 2025
From the Department of Plastic Surgery, Hull University Teaching Hospitals, East Riding of Yorkshire, United Kingdom.
Biodegradable temporizing matrix (BTM) is a synthetic biodegradable dermal matrix that helps develop a non-skin graft amenable wound bed (eg, over tendon or bone) into a graftable wound bed, by acting as an inert scaffold for angiogenesis and formation of granulation tissue. There is currently a paucity of evidence to encourage its use in scalp defects following skin malignancy excision. This retrospective analysis aimed to evaluate the utility of BTM in this patient subset.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China.
Background: The challenge of achieving effective tendon-to-bone healing remains a significant concern in sports medicine, necessitating further exploration. Biomimetic electrospun nanomaterials present promising avenues for improving this critical healing process.
Purpose: To investigate the biological efficacy of a novel aligned-to-random PLGA/Col1-PLGA/nHA bilayer electrospun nanofiber membrane in facilitating tendon-to-bone healing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!