Optical coherent dot-product chip for sophisticated deep learning regression.

Light Sci Appl

State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (imLic), Department of Electronic Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

Published: November 2021

Optical implementations of neural networks (ONNs) herald the next-generation high-speed and energy-efficient deep learning computing by harnessing the technical advantages of large bandwidth and high parallelism of optics. However, due to the problems of the incomplete numerical domain, limited hardware scale, or inadequate numerical accuracy, the majority of existing ONNs were studied for basic classification tasks. Given that regression is a fundamental form of deep learning and accounts for a large part of current artificial intelligence applications, it is necessary to master deep learning regression for further development and deployment of ONNs. Here, we demonstrate a silicon-based optical coherent dot-product chip (OCDC) capable of completing deep learning regression tasks. The OCDC adopts optical fields to carry out operations in the complete real-value domain instead of in only the positive domain. Via reusing, a single chip conducts matrix multiplications and convolutions in neural networks of any complexity. Also, hardware deviations are compensated via in-situ backpropagation control provided the simplicity of chip architecture. Therefore, the OCDC meets the requirements for sophisticated regression tasks and we successfully demonstrate a representative neural network, the AUTOMAP (a cutting-edge neural network model for image reconstruction). The quality of reconstructed images by the OCDC and a 32-bit digital computer is comparable. To the best of our knowledge, there is no precedent of performing such state-of-the-art regression tasks on ONN chips. It is anticipated that the OCDC can promote the novel accomplishment of ONNs in modern AI applications including autonomous driving, natural language processing, and scientific study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560900PMC
http://dx.doi.org/10.1038/s41377-021-00666-8DOI Listing

Publication Analysis

Top Keywords

deep learning
20
learning regression
12
regression tasks
12
optical coherent
8
coherent dot-product
8
dot-product chip
8
neural networks
8
neural network
8
regression
6
deep
5

Similar Publications

Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.

View Article and Find Full Text PDF

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

With the rising demand of saffron, it is essential to standardize the confirmation of its origin and identify any adulteration to maintain a good quality led market product. However, a rapid and reliable strategy for identifying the adulteration saffron is still lacks. Herein, a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and convolutional neural network (CNN) was developed.

View Article and Find Full Text PDF

Detecting anomalies in smart wearables for hypertension: a deep learning mechanism.

Front Public Health

January 2025

Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.

Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).

View Article and Find Full Text PDF

Dynamic-budget superpixel active learning for semantic segmentation.

Front Artif Intell

January 2025

Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada.

Introduction: Active learning can significantly decrease the labeling cost of deep learning workflows by prioritizing the limited labeling budget to high-impact data points that have the highest positive impact on model accuracy. Active learning is especially useful for semantic segmentation tasks where we can selectively label only a few high-impact regions within these high-impact images. Most established regional active learning algorithms deploy a static-budget querying strategy where a fixed percentage of regions are queried in each image.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!