A new relative quantification strategy for glycomics, named deuterium oxide (DO) labeling for global omics relative quantification (DOLGOReQ), has been developed based on the partial metabolic DO labeling, which induces a subtle change in the isotopic distribution of glycan ions. The relative abundance of unlabeled to D-labeled glycans was extracted from the overlapped isotopic envelope obtained from a mixture containing equal amounts of unlabeled and D-labeled glycans. The glycan quantification accuracy of DOLGOReQ was examined with mixtures of unlabeled and D-labeled HeLa glycans combined in varying ratios according to the number of cells present in the samples. The relative quantification of the glycans mixed in an equimolar ratio revealed that 92.4 and 97.8% of the DOLGOReQ results were within a 1.5- and 2-fold range of the predicted mixing ratio, respectively. Furthermore, the dynamic quantification range of DOLGOReQ was investigated with unlabeled and D-labeled HeLa glycans mixed in different ratios from 20:1 to 1:20. A good correlation (Pearson's > 0.90) between the expected and measured quantification ratios over 2 orders of magnitude was observed for 87% of the quantified glycans. DOLGOReQ was also applied in the measurement of quantitative HeLa cell glycan changes that occur under normoxic and hypoxic conditions. Given that metabolic DO labeling can incorporate D into all types of glycans, DOLGOReQ has the potential as a universal quantification platform for large-scale comparative glycomic experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c03157DOI Listing

Publication Analysis

Top Keywords

relative quantification
16
unlabeled d-labeled
16
deuterium oxide
8
oxide labeling
8
labeling global
8
global omics
8
omics relative
8
quantification
8
quantification dolgoreq
8
metabolic labeling
8

Similar Publications

Simultaneous Concentration and T Mapping of Brain Metabolites by Fast Multi-Echo Spectroscopic Imaging.

NMR Biomed

February 2025

MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.

The purpose of this study was to produce metabolite-specific T and concentration maps in a clinically compatible time frame. A multi-TE 2D MR spectroscopic imaging (MRSI) experiment (multi-echo single-shot MRSI [MESS-MRSI]) deployed truncated and partially sampled multi-echo trains from single scans and was combined with simultaneous multiparametric model fitting. It was tested in vivo for the brain in five healthy subjects.

View Article and Find Full Text PDF

Purpose: The sphingosine-1-phosphate receptor-1 (S1PR) is involved in regulating responses to neuroimmune stimuli. There is a need for S1PR-specific radioligands with clinically suitable brain pharmcokinetic properties to complement existing radiotracers. This work evaluated a promising S1PR radiotracer, [F]TZ4877, in nonhuman primates.

View Article and Find Full Text PDF

Among the vast array of functional nanoparticles (NPs) under development, nickel tungstate (NiWO) has gained prominence due to its potential applications as a catalyst, sensor, and in the development of supercapacitors. Consequently, new studies on the environmental impact of this material must be conducted to establish a regulatory framework for its management. This work aims to assess the effects of NiWO (NPs) on multiple endpoints (e.

View Article and Find Full Text PDF

Objective: To evaluate the repeatability of AI-based automatic measurement of vertebral and cardiovascular markers on low-dose chest CT.

Methods: We included participants of the population-based Imaging in Lifelines (ImaLife) study with low-dose chest CT at baseline and 3-4 month follow-up. An AI system (AI-Rad Companion chest CT prototype) performed automatic segmentation and quantification of vertebral height and density, aortic diameters, heart volume (cardiac chambers plus pericardial fat), and coronary artery calcium volume (CACV).

View Article and Find Full Text PDF

Identification of 3-methoxytyramine as a specific biomarker for beet-sugar-fed honey: A two year surveillance study in South Korea.

Food Res Int

January 2025

New Hazardous Substances Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Chungcheongbuk-do 28159, Republic of Korea. Electronic address:

Honey is highly vulnerable to food fraud, and there are growing concerns about product authenticity. The commonly used stable carbon isotope ratios in the Calvin (C3) and Hatch-Slack (C4) photosynthesis cycles in plant feed cannot distinguish between beet-sugar-fed honey and natural honey. However, 3-methoxytyramine (3-MT) can be used as specific biomarker for identifying adulteration of beet-sugar-fed honey.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!