Beam splitters are core components of photonic integrated circuits and are often implemented with multimode interference couplers. While these devices offer high performance, their operational bandwidth is still restrictive for sensing applications in the mid-infrared wavelength range. Here we experimentally demonstrate a subwavelength-structured 2×2 multimode interference coupler with high performance in the 3.1-3.7µ range, doubling the bandwidth of a conventional device.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.439985DOI Listing

Publication Analysis

Top Keywords

multimode interference
12
interference coupler
8
high performance
8
broadband 2  ×  2
4
2  ×  2 multimode
4
coupler mid-infrared
4
mid-infrared wavelengths
4
wavelengths beam
4
beam splitters
4
splitters core
4

Similar Publications

A HPU-23@Ru@Tb-NH sensor array with light-driven oxidase-mimicking activity and triple-emission fluorescence was developed. It was composed of a Tb-functionalized metal organic framework and Ru(bpy) and applied to the simultaneous detection of Hg, ClO, and PO via differently responsive channels. HPU-23@Ru@Tb-NH had a photoresponsive colorimetric response toward Hg with a LOD as low as 4.

View Article and Find Full Text PDF

Silica Waveguide Thermo-Optic Mode Switch with Bimodal S-Bend.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.

A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E and E mode selective output. The beam propagation method is used in design optimization.

View Article and Find Full Text PDF
Article Synopsis
  • The proposed hybrid photonic platform combines chalcogenide glass (GeSbSe) with lithium niobate on insulator (LNOI) to enhance performance and compactness for integrated photonic systems.
  • Key components such as grating couplers, micro-ring resonators, multimode interference couplers, and Mach-Zehnder interferometers are designed and fabricated, achieving high quality factors and low propagation losses.
  • This platform's unique optical properties allow for scalable, low-loss integrated photonic circuits, making it suitable for applications in high-speed optical communications and signal processing.
View Article and Find Full Text PDF

The cross talk and power consumption of the 2 × 2 optical switch is a key metric in the design of large-scale photonic integrated circuits (PICs). We build a theoretical model of a 2 × 2 Mach-Zehnder interferometer (MZI) optical switch, taking into account both imbalances in the arm loss and the coupler splitting ratio. The splitting ratio imbalance requirement for a given switch cross talk is summarized, which provides a guideline for the switch design.

View Article and Find Full Text PDF

Highly sensitive and real-time detection of acetone biomarker for diabetes using a ZnO-coated optical fiber sensor.

Biosens Bioelectron

March 2025

International School of Engineering (ISE), Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand. Electronic address:

This work presents a ZnO-coated no-core optical fiber sensor (OFS) designed for the highly sensitive detection of acetone vapor. Acetone is a key biomarker for diabetes, which is linked to blood glucose levels and can be detected non-invasively through breath analysis. The OFS utilizes a no-core fiber (NCF) as the sensing region, coated with a thin layer of ZnO nanoparticles to enhance evanescent field interaction with the VOCs at the fiber interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!