Background: Cellular senescence is an aging-related process found in cancer cells that contributes to irreversible growth arrest and tumor aggressiveness. Recently, calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), a minus-end microtubule-stabilizing protein, has received increasing attention in cancer cell biology. However, the biological role of CAMSAP3 on senescence in human lung cancer remains incompletely understood.
Methods: The function of CAMSAP3 on the regulation of cellular senescence-associated phenotypes in human non-small cell lung cancer H460 cells were determined in CAMSAP3 deletion (H460/C3ko) cells. The effects of CAMSAP3 on cell proliferation were investigated using MTT and colony formation assays. The cell cycle activity was evaluated by flow cytometry and the senescence-associated phenotypes were observed by SA-β-Gal staining. Quantitative RT-PCR and westen blot were used to evaluate the expression of cell cycle and senescence markers. Moreover, the interaction of CAMSAP3-ERK1/2 and possible partner protein was quantified using immunoprecipitation/mass spectrometry and immunofluorescence. Lastly, an xenograft model were performed.
Results: CAMSAP3 knockout promotes lung cancer cell senescence-associated phenotypes and induces G1 cell cycle arrest. Mechanistic investigation revealed that phosphorylated ERK (p-ERK) was markedly downregulated in CAMSAP3-deleted cells, suppressing cyclin D1 expression levels, and full-length CAMSAP3 abrogated these phenotypes. Proteomic analysis demonstrated that vimentin, an intermediate filament protein, is required as a scaffold for CAMSAP3-modulating ERK signaling. Furthermore, an in vivo tumor xenograft experiment showed that tumor initiation is potentially delayed in CAMSAP3 knockout tumors with the downregulation of p-ERK and cyclin D1, resulting in a senescence-like phenotype.
Conclusion: This study is the first to report an intriguing role of CAMSAP3 in lung carcinoma cell senescence-associated phenotypes via the modulation of p-ERK/cyclin D1 signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683528 | PMC |
http://dx.doi.org/10.1002/cam4.4380 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!