A clinically applicable strategy to estimate the in vivo distribution of mechanical material properties of the right ventricular wall.

Int J Numer Method Biomed Eng

Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Published: February 2022

A clinically applicable approach to estimate the in vivo mechanical material properties of the heart wall is presented. This optimization-based inverse estimation approach applies a shape-based objective functional combined with rigid body registration and incremental parameterization of heterogeneity to use standard clinical imaging data along with simplified representations of cardiac function to provide consistent and physically meaningful solution estimates. The capability of the inverse estimation algorithm is evaluated through application to two clinically obtained human datasets to estimate the passive elastic mechanical properties of the heart wall, with an emphasis on the right ventricle. One dataset corresponded to a subject with normal heart function, while the other corresponded to a subject with severe pulmonary hypertension, and therefore expected to have a substantially stiffer right ventricle. Patient-specific pressure-driven bi-ventricle finite element analysis was used as the forward model and the endocardial surface of the right ventricle was used as the target data for the inverse problem. By using the right ventricle alone as the target of the inverse problem the relative sensitivity of the objective function to the right ventricle properties is increased. The method was able to identify material properties to accurately match the corresponding shape of the simplified forward model to the clinically obtained target data, and the properties obtained for the example cases are consistent with the clinical expectation for the right ventricle. Additionally, the material property estimates indicate significant heterogeneity in the heart wall for both subjects, and more so for the subject with pulmonary hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3548DOI Listing

Publication Analysis

Top Keywords

material properties
12
heart wall
12
clinically applicable
8
estimate vivo
8
mechanical material
8
properties heart
8
inverse estimation
8
corresponded subject
8
pulmonary hypertension
8
forward model
8

Similar Publications

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Multi-objective design of multi-material truss lattices utilizing graph neural networks.

Sci Rep

January 2025

Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems.

View Article and Find Full Text PDF

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!