For the first time, a direct single-step one-pot route to access nine new symmetric tetraalkynylated anthracenes Pd(CHCN)Cl/cataCXium®A catalyzed tetra-fold Sonogashira coupling is reported. Five of these tetraalkynylated anthracenes have been crystallographically characterized, with two of them exhibiting multiple interactions that significantly shorten the inter-planar distances in the solid-state structure. The rich photophysical properties exhibited by these molecules hold immense promise for future applications in sensors and optoelectronic devices. Two of the considered tetraalkynylated anthracenes comprising a D-π-A-π-D motif demonstrate solvatochromism and halochromism, with one of them showing a low bandgap of 1.79 eV. The remaining compounds demonstrate bandgaps in the range of 1.79-2.04 eV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1ob01861b | DOI Listing |
ACS Omega
May 2023
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
The multifold Sonogashira coupling of a class of aryl halides with arylacetylene in the presence of an equivalent of CsCO has been accomplished using a combination of Pd(CHCN)Cl (0.5 mol %) and cataCXium A (1 mol %) under copper-free and amine-free conditions in a readily available green solvent at room temperature. The protocol was used to transform several aryl halides and alkynes to the corresponding coupled products in good to excellent yields.
View Article and Find Full Text PDFOrg Biomol Chem
November 2021
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
For the first time, a direct single-step one-pot route to access nine new symmetric tetraalkynylated anthracenes Pd(CHCN)Cl/cataCXium®A catalyzed tetra-fold Sonogashira coupling is reported. Five of these tetraalkynylated anthracenes have been crystallographically characterized, with two of them exhibiting multiple interactions that significantly shorten the inter-planar distances in the solid-state structure. The rich photophysical properties exhibited by these molecules hold immense promise for future applications in sensors and optoelectronic devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!