We demonstrate loading of SrF molecules into an optical dipole trap (ODT) via in-trap Λ-enhanced gray molasses cooling. We find that this cooling can be optimized by a proper choice of relative ODT and cooling beam polarizations. In this optimized configuration, we observe molecules with temperatures as low as 14(1)  μK in traps with depths up to 570  μK. With optimized parameters, we transfer ∼5% of molecules from our radio-frequency magneto-optical trap into the ODT, at a density of ∼2×10^{9}  cm^{-3}, a phase space density of ∼2×10^{-7}, and with a trap lifetime of ∼1  s.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.163201DOI Listing

Publication Analysis

Top Keywords

optical dipole
8
trap odt
8
polarization enhanced
4
enhanced deep
4
deep optical
4
dipole trapping
4
trapping Λ-cooled
4
Λ-cooled polar
4
molecules
4
polar molecules
4

Similar Publications

The complex dynamics of terahertz (THz) wave scattering by subwavelength-scale structures remain largely unexplored. This article examines the spectral scattering characteristics of subwavelength-sized spherical particles probed by tightly focused THz waves through numerical simulations and experimental techniques. The simulations reveal that the scattering intensity for lower Mie resonance modes (magnetic dipole and electric dipole modes) remains largely unaffected when THz waves are focused down to 0.

View Article and Find Full Text PDF

In van der Waals (vdW) architectures of transition metal dichalcogenides (TMDCs), the coupling between interlayer exciton and quantum degrees of freedom opens unprecedented opportunities for excitonic physics. Taking the MoSe homobilayer as representative, we identify that the interlayer registry defines the nature and dynamics of the lowest-energy interlayer exciton. The large layer polarization () is proved, which ensures the formation of layer-resolved interlayer excitons.

View Article and Find Full Text PDF

Impact of Dipole Self-Energy on Cavity-Induced Nonadiabatic Dynamics.

J Chem Theory Comput

January 2025

Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen H-4002, Hungary.

The coupling of matter to the quantized electromagnetic field of a plasmonic or optical cavity can be harnessed to modify and control chemical and physical properties of molecules. In optical cavities, a term known as the dipole self-energy (DSE) appears in the Hamiltonian to ensure gauge invariance. The aim of this work is twofold.

View Article and Find Full Text PDF

Density Functional Theory Insight in Photocatalytic Degradation of Dichlorvos Using Covalent Triazine Frameworks Modified by Various Oxygen-Containing Acid Groups.

Toxics

December 2024

Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China.

Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox ability, have emerged as promising candidates for the photocatalytic degradation of DDVP. Nevertheless, pure CTFs lack effective oxidative active sites, resulting in elevated reaction energy barriers during the photodegradation of DDVP.

View Article and Find Full Text PDF

Modularized Reconfigurable Functional Electromagnetic Surfaces Using Tightly Coupled Antennas and Back-Loaded Radio Frequency Circuits.

Micromachines (Basel)

December 2024

Key Laboratory of Near-Range RF Sensing ICs and Microsystems (NJUST), Ministry of Education, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

This paper presents a modularized reconfigurable functional electromagnetic surface (MRFES) for broadband absorption and polarization conversion by using tightly coupled dipole antennas (TCDA) and back-loaded radio frequency (RF) circuits (BLRFC). A dual-polarized antenna array with tight coupling and wide angular scanning characteristics is designed. By loading different RF circuits on the back side of the antenna array's ground plane, switchable broadband absorption and polarization conversion functions are achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!