Measurement of Film-Elastomer Interface Adhesion by Continuous Buckling.

ACS Appl Mater Interfaces

Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.

Published: November 2021

Measurement of interfacial properties between thin films and elastomers is investigated. As a prototype, the interface adhesion between a graphite nanoflake and an elastic polymer is determined by topography imaging of the induced graphite buckles using atomic force microscopy. A theoretical analysis is carried out to establish the relationship among interface adhesion, elastic strain energy, and buckle surface area. The strain energy of the graphite is obtained by employing an elastic plate deflection theory. To introduce the buckles, different methods are applied, including thermal contraction, bending, and stretching, and different substrate materials, namely, polydimethylsiloxane and polystyrene, are used. The uncertainty in measuring the interface adhesion is discussed. These investigations provide a promising approach to characterize the interfacial properties of multilayer samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c16147DOI Listing

Publication Analysis

Top Keywords

interface adhesion
16
interfacial properties
8
strain energy
8
measurement film-elastomer
4
interface
4
film-elastomer interface
4
adhesion
4
adhesion continuous
4
continuous buckling
4
buckling measurement
4

Similar Publications

To investigate the water damage at the interface between emulsified asphalt and aggregate under the action of external water infiltration, firstly, cetyltrimethylammonium bromide was used as an emulsifier to prepare emulsified asphalt in the laboratory, and its basic properties were tested. Then, based on molecular dynamics, an emulsified asphalt-aggregate interface model with different water contents was constructed to calculate the adhesion work of the emulsified asphalt-aggregate interface. The results show that the simulated values of emulsified asphalt density, cohesive energy density, and solubility are in good agreement with the experimental values.

View Article and Find Full Text PDF

Controlled Tensile Behavior of Pre-Cured PDMS via Advanced Bonding Techniques.

Polymers (Basel)

January 2025

Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.

Polydimethylsiloxane (PDMS) is extensively employed in applications ranging from flexible electronics to microfluidics due to its elasticity, transparency, and biocompatibility. However, enhancing interfacial adhesion and tensile properties remains a challenge for applications demanding high mechanical stability. To this end, this study introduced a novel bonding technique using crosslinkers as adhesive layers to improve the mechanical performance of PDMS.

View Article and Find Full Text PDF

The surfaces of beech wood samples were treated with polyethylenimine (PEI) solutions at three different concentrations-0.5%, 1% and 2%-and two molecular weights-low molecular weight (LMW) and high molecular weight (HMW). The effects of PEI surface treatment of wood were characterized by FT-IR spectroscopy, the penetration depth of PEI (EPI fluorescence spectroscopy), the bonding position of PEI (by SEM), the wetting and surface energy, and the water uptake.

View Article and Find Full Text PDF

Matrix metalloproteinase (MMP)-induced collagen degradation at the resin-dentin interface remains a significant challenge for maintaining the longevity of dental restorations. This study investigated the effects of epigallocatechin-3-gallate (EGCG), a potent MMP inhibitor, on dental adhesive curing efficiency when encapsulated in halloysite nanotubes (HNTs). EGCG-loaded HNTs were incorporated into a commercial dental adhesive (Adper Scotchbond Multi-Purpose) at 7.

View Article and Find Full Text PDF

The present study aims to analyze the thermal regulation of the Ce/Ce ratio on the nanonetwork titania layer over the titanium (Ti) surface developed by the alkali-mediated surface modification approach. The effect of sequential heat treatment from 200 to 800 °C was evaluated for its surface characteristics such as morphology, phase formation, roughness, hardness, hydrophilicity, etc. Surface oxidation by temperatures up to 600 °C demonstrated a progressive increase in the Ce (CeO) content with a rutile TiO network layer over the Ti surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!