Lightweight and elastically deformable soft materials that are thermally conductive are critical for emerging applications in wearable computing, soft robotics, and thermoregulatory garments. To overcome the fundamental heat transport limitations in soft materials, room temperature liquid metal (LM) has been dispersed in elastomer that results in soft and deformable materials with unprecedented thermal conductivity. However, the high density of LMs (>6 g cm ) and the typically high loading (⩾85 wt%) required to achieve the desired properties contribute to the high density of these elastomer composites, which can be problematic for large-area, weight-sensitive applications. Here, the relationship between the properties of the LM filler and elastomer composite is systematically studied. Experiments reveal that a multiphase LM inclusion with a low-density phase can achieve independent control of the density and thermal conductivity of the elastomer composite. Quantitative design maps of composite density and thermal conductivity are constructed to rationally guide the selection of filler properties and material composition. This new multiphase material architecture provides a method to fine-tune material composition to independently control material and functional properties of soft materials for large-area and weight-sensitive applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202104762 | DOI Listing |
Langmuir
January 2025
Guangdong Provincial Key Laboratory of Thermal Management Engineering & Materials, National-Local Joint Engineering Laboratory of Functional Carbon Materials, Shenzhen 518055, China.
Alumina/polymer composites are conventional thermal interface materials widely used for heat dissipation. However, the interfacial thermal resistance (ITR) dominates the thermal conductivity (TC) of these composites, presenting a critical challenge. This study introduces erythritol as an innovative thermal bridge to effectively reduce the ITR by selectively locating it at the interfaces among alumina (AlO) particles.
View Article and Find Full Text PDFWaste Manag
January 2025
Department of Materials Science and Engineering, University of Seoul, Seoul 02504, South Korea. Electronic address:
This study investigates zone melting (ZM) as an innovative method for recycling 7000 series aluminum alloy scraps, a byproduct of computer numerical control (CNC) machining in smartphone production. Traditional fluxing methods are ineffective at removing Zn, a key alloying element. Vacuum atmospheric ZM utilizes the evaporation of Zn and Mg impurities and solidification segregation to concentrate elemental impurities within the melt, facilitating their efficient removal.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
Maintaining human body temperature in both high and low-temperature environments is fundamental to human survival, necessitating high-performance thermal insulation materials to prevent heat exchange with the external environment. Currently, most fibrous thermal insulation materials are characterized by large weight, suboptimal thermal insulation, and inferior mechanical and waterproof performance, thereby limiting their effectiveness in providing thermal protection for the human body. In this study, lightweight, waterproof, mechanically robust, and thermal insulating polyamide-imide (PAI) grooved micro/nanofibrous aerogels were efficiently and directly assembled by electrospinning.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Xi'an Jiaotong University, School of Microelectronics & State Key Laboratory for Mechanical Behavior of Materials, Xi'an 710049, China.
The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.
View Article and Find Full Text PDFCarbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties . This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!