Discrete-Particle Model to Optimize Operational Conditions of Proton-Exchange Membrane Fuel-Cell Gas Channels.

ACS Appl Energy Mater

Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K.

Published: October 2021

Operation of proton-exchange membrane fuel cells is highly deteriorated by mass transfer loss, which is a result of spatial and temporal interaction between airflow, water flow, channel geometry, and its wettability. Prediction of two-phase flow dynamics in gas channels is essential for the optimization of the design and operating of fuel cells. We propose a mechanistic discrete particle model (DPM) to delineate dynamic water distribution in fuel cell gas channels and optimize the operating conditions. Similar to the experimental observations, the model predicts seven types of flow regimes from isolated, side wall, corner, slug, film, and plug flow droplets for industrial temporal and spatial scales. Consequently, two-phase flow regime maps are proposed. The results suggest that an increase in water accumulation in the channel is related to the increase in the water cluster density emerging from the gas diffusion layer rather than the increased water flow rate through constant water pathways. From a modeling perspective, the DPM replicated well volume-of-fluid channel simulation results in terms of saturation, water coverage ratio, and interface locations with an estimated 5 orders of magnitude increase in calculation speed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552217PMC
http://dx.doi.org/10.1021/acsaem.1c01391DOI Listing

Publication Analysis

Top Keywords

gas channels
12
proton-exchange membrane
8
fuel cells
8
water flow
8
two-phase flow
8
increase water
8
water
7
flow
6
discrete-particle model
4
model optimize
4

Similar Publications

Continuous photo-oxidation of methane to methanol at an atomically tailored reticular gas-solid interface.

Nat Commun

January 2025

Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.

Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.

View Article and Find Full Text PDF

For potential application in advanced memory devices such as dynamic random-access memory (DRAM) or NAND flash, nanolaminated indium oxide (In-O) and gallium oxide (Ga-O) films with five different vertical cation distributions were grown and investigated by using a plasma-enhanced atomic layer deposition (PEALD) process. Specifically, this study provides an in-depth examination of how the control of individual layer thicknesses in the nanolaminated (NL) IGO structure impacts not only the physical and chemical properties of the thin film but also the overall device performance. To eliminate the influence of the cation composition ratio and overall thickness on the IGO thin film, these parameters were held constant across all conditions.

View Article and Find Full Text PDF

Graphene is a single-layered sp-hybridized carbon allotrope, which is impermeable to all atomic entities other than hydrogen. The introduction of defects allows selective gas permeation; efforts have been made to control the size of these defects for higher selectivity. Permeation of entities other than gases, such as ions, is of fundamental scientific interest because of its potential application in desalination, detection and purification.

View Article and Find Full Text PDF

Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.

View Article and Find Full Text PDF

Exploiting supramolecular secondary building units (SSBUs) for developing porous crystalline materials represents an exciting breakthrough that extends the boundaries of reticular chemistry. However, shaping polynuclear clusters sustained by non-covalent interactions for the assembly of hydrogen-bonded frameworks remains a critical challenge. This study presents a novel strategy to stabilize SSBUs by tuning the π-stacking geometry of conjugated building blocks, facilitating the creation of hydrogen-bonded frameworks with tailored architectures for demanding gas separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!