Diversity of Nuclear Lamin A/C Action as a Key to Tissue-Specific Regulation of Cellular Identity in Health and Disease.

Front Cell Dev Biol

Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.

Published: October 2021

A-type lamins are the main structural components of the nucleus, which are mainly localized at the nucleus periphery. First of all, A-type lamins, together with B-type lamins and proteins of the inner nuclear membrane, form a stiff structure-the nuclear lamina. Besides maintaining the nucleus cell shape, A-type lamins play a critical role in many cellular events, such as gene transcription and epigenetic regulation. Nowadays it is clear that lamins play a very important role in determining cell fate decisions. Various mutations in genes encoding A-type lamins lead to damages of different types of tissues in humans, collectively known as laminopathies, and it is clear that A-type lamins are involved in the regulation of cell differentiation and stemness. However, the mechanisms of this regulation remain unclear. In this review, we discuss how A-type lamins can execute their regulatory role in determining the differentiation status of a cell. We have summarized recent data focused on lamin A/C action mechanisms in regulation of cell differentiation and identity development of stem cells of different origin. We also discuss how this knowledge can promote further research toward a deeper understanding of the role of lamin A/C mutations in laminopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548693PMC
http://dx.doi.org/10.3389/fcell.2021.761469DOI Listing

Publication Analysis

Top Keywords

a-type lamins
24
lamin a/c
12
a/c action
8
lamins
8
lamins play
8
role determining
8
regulation cell
8
cell differentiation
8
mechanisms regulation
8
a-type
6

Similar Publications

Article Synopsis
  • Hutchison-Gilford progeria syndrome (HGPS) is a genetic disorder caused by a mutation in the LMNA gene, leading to rapid aging and serious health issues, including bone density loss and a shorter life span.
  • In studies using Lmna progeria mice, researchers analyzed bone mineralization and found similarities in mineral content across various ages but noted a higher number of empty osteocyte lacunae, indicating bone deterioration.
  • The findings highlighted significant reductions in bone volume and abnormal growth plates in Lmna mice, suggesting that bone dysplasia occurs due to problems in bone formation despite normal turnover rates.
View Article and Find Full Text PDF

Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid disorder characterized by multiple aging-like phenotypes, including disease in large arteries. HGPS is caused by an internally truncated prelamin A (progerin) that cannot undergo the ZMPSTE24-mediated processing step that converts farnesyl-prelamin A to mature lamin A; consequently, progerin retains a carboxyl-terminal farnesyl lipid anchor. In cultured cells, progerin and full-length farnesyl-prelamin A (produced in cells) form an abnormal nuclear lamin meshwork accompanied by nuclear membrane ruptures and cell death; however, these proteins differ in their capacity to cause arterial disease.

View Article and Find Full Text PDF

Perinuclear assembly of vimentin intermediate filaments induces cancer cell nuclear dysmorphia.

J Biol Chem

November 2024

Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Article Synopsis
  • - Nuclear dysmorphia, which refers to abnormal nuclear shapes in cancer cells, is linked to cancer severity and is characterized by irregular nuclear formations, with vimentin being a key protein involved in this process.
  • - In breast cancer cells (MDA-MB-231), vimentin intermediate filaments were found to accumulate at the concave areas of dysmorphic nuclei, and removing vimentin helped restore the nuclear shape, unlike a mutant form that couldn't assemble correctly.
  • - The study also revealed that depleting vimentin in lung cancer cells (A549) reduced nuclear dysmorphia during a process induced by TGFβ and associated with further DNA repair defects, indicating vimentin's
View Article and Find Full Text PDF
Article Synopsis
  • Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by a mutation in the LMNA gene, leading to accelerated aging and severe cardiovascular issues starting within the first year of life.
  • The study found that progerin expression in vascular smooth muscle cells (VSMCs) causes increased cell death, which is linked to elevated levels of poly(ADP-Ribosyl)ation and reduced nicotinamide adenine dinucleotide (NAD) levels.
  • A new compound, trifluridine, was discovered to increase NAD levels by reducing PARP-1 activity, and its treatment showed potential in reducing VSMCs loss and improving clinical signs of progeria in mice
View Article and Find Full Text PDF

Mouse polyomavirus infection induces lamin reorganisation.

FEBS J

December 2024

Department of Genetics and Microbiology, BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic.

The nuclear lamina is a dense network of intermediate filaments beneath the inner nuclear membrane. Composed of A-type lamins (lamin A/C) and B-type lamins (lamins B1 and B2), the nuclear lamina provides a scaffold for the nuclear envelope and chromatin, thereby maintaining the structural integrity of the nucleus. A-type lamins are also found inside the nucleus where they interact with chromatin and participate in gene regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!