Background: Skin is a sensitive organ and should be spared in radiotherapy and irradiation of skin in radiotherapy can cause to acute and late skin effects such as erythema, desquamation, epilation, color change, or even necrosis.

Objective: The aim of the present study is to do skin dosimetry in radiotherapy of parotid cancer using Gafchromic EBT3 radiochromic film. EBT3 radiochromic films were calibrated in 0.2-5 Gy dose range.

Material And Methods: This is an experimental study in the field of radiotherapy physics. Treatment planning was performed on a RANDO phantom for treatment of parotid cancer by a clinical oncologist. Based on the treatment planning, the skin dose at various points in the overlapping region of right anterior-oblique and right posterior-oblique fields were measured using EBT3 radiochromic film.

Results: The minimum and maximum skin doses in a fraction (with 2.0 Gy prescribed dose) were 0.50 Gy and 0.97 Gy, respectively. Based on these values, the total skin dose in 30 treatment fractions (for removed tumor) or in 35 treatment fractions (for unremoved tumor) was in the range of 15-33 Gy.

Conclusion: Based on the skin dosimetry results of parotid cancer radiotherapy using EBT3 films, it is predicted that there will occur mild skin reactions and these reactions can be neglected due to being mild.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546163PMC
http://dx.doi.org/10.31661/jbpe.v0i0.1083DOI Listing

Publication Analysis

Top Keywords

ebt3 radiochromic
16
parotid cancer
16
skin dosimetry
12
skin
10
radiochromic film
8
radiotherapy parotid
8
treatment planning
8
skin dose
8
treatment fractions
8
radiotherapy
6

Similar Publications

This study analyzed the spectral response of EBT3, EBT4, and EBT-XD radiochromic films using absorption spectroscopy. The primary focus was on characterizing the evolution of spectral signatures across a range of absorbed doses, thereby elucidating the unique dose-dependent response profiles of each film type. Ten samples of each film type were subjected to open field irradiation within their designated dose ranges (1-20 Gy for EBT3 and EBT4, 1-50 Gy for EBT-XD).

View Article and Find Full Text PDF

The sensitivity of radiochromic films to UV-blue light is increasingly considered for light dosimetry purposes, owing to their bidimensional detection capabilities and ease of use. While film response to radiation intensity has been widely investigated by commercial scanners, spatial resolution studies remain scarce, especially for small field-of-view applications. These are of growing interest due to the antimicrobial or photo-bio-stimulating effects of UV-blue light sources in in vitro, ex vivo and in vivo models, where precise knowledge of irradiation conditions with adequate spatial resolution is crucial.

View Article and Find Full Text PDF

Implementation of OSL nanoDot dosimetry in different treatment techniques for head and neck cancer.

Radiat Prot Dosimetry

December 2024

Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Edificio 6, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, 07738 Ciudad de México, México.

In recent decades, technological advances have been made in the field of radiotherapy and with it the emergence of new dosimetric systems for their calibration and commissioning, among other uses. Such is the case of the measurement in the build-up region, where there is no charged-particle equilibrium, which is reflected in the increase in surface dose for patient treatments and potential skin toxicities as a secondary effect. This study utilizes optically stimulated dosemeters (nanoDot) and the radiochromic film (EBT3) to measure skin doses in patients with head and neck cancer who received radiotherapy.

View Article and Find Full Text PDF

Systematic characterization of new EBT4 radiochromic films in clinical x-ray beams.

Biomed Phys Eng Express

November 2024

Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, VA, United States of America.

. We aim to characterize kinetics of radiation-induced optical density in newly released EBT4 radiochromic films exposed to clinical x-rays. Several film models and batches were evaluated for the film sensitivity, optical signal increasing with time, relative film noise, and minimum detectable limits (MDL).

View Article and Find Full Text PDF

Purpose: Radiochromic EBT3 films are commonly used as dosimeter for clinical practice and research on radiotherapy. In principle, they are associated with a flatbed scanner to determine the optical density change, which can be correlated to the absorbed dose after calibration. Several approaches have been proposed to reduce the uncertainties during acquisition and to compensate the lighting inhomogeneities, thus improving the dose measurement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!