N6-Methyladenosine-Sculpted Regulatory Landscape of Noncoding RNA.

Front Oncol

Department of Radiology, The First Affiliated Hospital of the University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China.

Published: October 2021

The exploration of dynamic N6-methyladenosine (m6A) RNA modification in mammalian cells has attracted great interest in recent years. M6A modification plays pivotal roles in multiple biological and pathological processes, including cellular reprogramming, fertility, senescence, and tumorigenesis. In comparison with growing research unraveling the effects of m6A modifications on eukaryotic messenger RNAs, reports of the association between noncoding RNAs and m6A modification are relatively limited. Noncoding RNAs that undergo m6A modification are capable of regulating gene expression and also play an important role in epigenetic regulation. Moreover, the homeostasis of m6A modification can be affected by noncoding RNAs across a broad spectrum of biological activities. Importantly, fine-tuning and interaction between these processes are responsible for cell development, as well as the initiation and progression of the disease. Hence, in this review, we provide an account of recent developments, revealing biological interactions between noncoding RNAs and m6A modification, and discuss the potential clinical applications of interfering with m6A modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554331PMC
http://dx.doi.org/10.3389/fonc.2021.743990DOI Listing

Publication Analysis

Top Keywords

m6a modification
24
noncoding rnas
16
m6a
8
rnas m6a
8
modification
7
noncoding
5
rnas
5
n6-methyladenosine-sculpted regulatory
4
regulatory landscape
4
landscape noncoding
4

Similar Publications

RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of followed by mutations in epigenetic regulators , , and . Mutations in , a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming.

View Article and Find Full Text PDF

tRNA m1A modification regulates cholesterol biosynthesis to promote antitumor immunity of CD8+ T cells.

J Exp Med

March 2025

Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.

View Article and Find Full Text PDF

NKAP: a new m6A RNA binding protein predicts prognosis and immunotherapy response in head and neck squamous cell carcinoma.

J Stomatol Oral Maxillofac Surg

January 2025

Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.

Objective: This study aimed to investigate whether NKAP (nuclear factor κB activating protein) serves as a prognostic marker and predictive biomarker for immunotherapy response in head and neck squamous cell carcinoma (HNSCC).

Methods: A retrospective cohort study combined with in vitro analyses was conducted. NKAP mRNA expression levels were assessed in 520 HNSCC tumor tissues and 44 normal tissues from the TCGA dataset and validated in a clinical cohort (n=32).

View Article and Find Full Text PDF

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!