Injectable hydrogel systems are a facile approach to apply to the damaged meniscus in a minimally invasive way. We herein developed a clinically applicable and injectable semi-interpenetrated network (semi-IPN) hydrogel system based on fibrin (Fb), reinforced with Pluronic F127 (F127) and polymethyl methacrylate (PMMA), to improve the intrinsic weak mechanical properties. Through the dual-syringe device system, the hydrogel could form a gel state within about 50 s, and the increment of compressive modulus of Fb hydrogels was achieved by adding F127 from 3.0% (72.0 ± 4.3 kPa) to 10.0% (156.0 ± 9.8 kPa). The shear modulus was enhanced by adding PMMA microbeads (26.0 ± 1.1 kPa), which was higher than Fb (13.5 ± 0.5 kPa) and Fb/F127 (21.7 ± 0.8 kPa). Moreover, the addition of F127 and PMMA also delayed the rate of enzymatic biodegradation of Fb hydrogel. Finally, we confirmed that both Fb/F127 and Fb/F127/PMMA hydrogels showed accelerated tissue repair in the in vivo segmental defect of the rabbit meniscus model. In addition, the histological analysis showed that the quality of the regenerated tissues healed by Fb/F127 was particularly comparable to that of healthy tissue. The biomechanical strength of the regenerated tissues of Fb/F127 (3.50 ± 0.35 MPa) and Fb/F127/PMMA (3.59 ± 0.89 MPa) was much higher than that of Fb (0.82 ± 0.05 MPa) but inferior to that of healthy tissue (6.63 ± 1.12 MPa). These results suggest that the reinforcement of Fb hydrogel using FDA-approved synthetic biomaterials has great potential to be used clinically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552387PMC
http://dx.doi.org/10.1177/20417314211050141DOI Listing

Publication Analysis

Top Keywords

regenerated tissues
8
healthy tissue
8
hydrogel
5
meniscus regeneration
4
regeneration injectable
4
injectable pluronic/pmma-reinforced
4
pluronic/pmma-reinforced fibrin
4
fibrin hydrogels
4
hydrogels rabbit
4
rabbit segmental
4

Similar Publications

Objective: This study aimed to evaluate the potential of combining allogeneic adipose-derived mesenchymal stem cells (ADSCs) with autologous concentrated growth factors (CGF) to enhance the repair of mandibular defects in rabbits.

Methods: Rabbit ADSCs were characterized using flow cytometry, identifying CD73, CD90, and CD105 as surface markers, while Alizarin Red Staining confirmed osteogenic differentiation, showing substantial mineralized deposits by day 21. A total of 24 New Zealand white rabbits were divided into four groups: BLANK (control group), CGF, ADSCs, and ADSCs/CGF.

View Article and Find Full Text PDF

Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side.

Pharmaceutics

December 2024

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.

View Article and Find Full Text PDF

The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.

View Article and Find Full Text PDF

Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles.

Pharmaceutics

November 2024

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS.

View Article and Find Full Text PDF

Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!