Public health and its related facilities are crucial for thriving cities and societies. The optimum utilization of health resources saves money and time, but above all, it saves precious lives. It has become even more evident in the present as the pandemic has overstretched the existing medical resources. Specific to patient appointment scheduling, the casual attitude of missing medical appointments (no-show-ups) may cause severe damage to a patient's health. In this paper, with the help of machine learning, we analyze six million plus patient appointment records to predict a patient's behaviors/characteristics by using ten different machine learning algorithms. For this purpose, we first extracted meaningful features from raw data using data cleaning. We applied Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling Method (Adasyn), and random undersampling (RUS) to balance our data. After balancing, we applied ten different machine learning algorithms, namely, random forest classifier, decision tree, logistic regression, XG Boost, gradient boosting, Adaboost Classifier, Naive Bayes, stochastic gradient descent, multilayer perceptron, and Support Vector Machine. We analyzed these results with the help of six different metrics, i.e., recall, accuracy, precision, F1-score, area under the curve, and mean square error. Our study has achieved 94% recall, 86% accuracy, 83% precision, 87% F1-score, 92% area under the curve, and 0.106 minimum mean square error. Effectiveness of presented data cleaning and feature selection is confirmed by better results in all training algorithms. Notably, recall is greater than 75%, accuracy is greater than 73%, F1-score is more significant than 75%, MSE is lesser than 0.26, and AUC is greater than 74%. The research shows that instead of individual features, combining different features helps make better predictions of a patient's appointment status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556091 | PMC |
http://dx.doi.org/10.1155/2021/2376391 | DOI Listing |
In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.
View Article and Find Full Text PDFAesthet Surg J
January 2025
Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Altınbas University, Istanbul, Turkey.
Background: Artificial intelligence (AI)-driven technologies offer transformative potential in plastic surgery, spanning pre-operative planning, surgical procedures, and post-operative care, with the promise of improved patient outcomes.
Objectives: To compare the web-based ChatGPT-4o (omni; OpenAI, San Francisco, CA) and Gemini Advanced (Alphabet Inc., Mountain View, CA), focusing on their data upload feature and examining outcomes before and after exposure to CME articles, particularly regarding their efficacy relative to human participants.
Br J Hosp Med (Lond)
January 2025
Department of Surgery & Cancer, Imperial College London, London, UK.
Predictive algorithms have myriad potential clinical decision-making implications from prognostic counselling to improving clinical trial efficiency. Large observational (or "real world") cohorts are a common data source for the development and evaluation of such tools. There is significant optimism regarding the benefits and use cases for risk-based care, but there is a notable disparity between the volume of clinical prediction models published and implementation into healthcare systems that drive and realise patient benefit.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.
View Article and Find Full Text PDFJ Insect Sci
January 2025
School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK.
Radio frequency identification (RFID) technology and marker recognition algorithms can offer an efficient and non-intrusive means of tracking animal positions. As such, they have become important tools for invertebrate behavioral research. Both approaches require fixing a tag or marker to the study organism, and so it is useful to quantify the effects such procedures have on behavior before proceeding with further research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!