Increasing attention has been given to the impact of extreme drought stress on ecosystem ecological processes. Ecosystem respiration (Re) and soil respiration (Rs) play a significant role in the regulation of the carbon (C) balance because they are two of the largest terrestrial C fluxes in the atmosphere. However, the responses of Re and Rs to extreme drought in alpine regions are still unclear, particularly with respect to the driver mechanism in plant and soil extracellular enzyme activities. In this study, we imposed three periods of extreme drought events based on field experiments on an alpine peatland: (1) early drought, in which the early stage of plant growth occurred from June 18 to July 20; (2) midterm drought, in which the peak growth period occurred from July 20 to August 23; and (3) late drought, in which the wilting period of plants occurred from August 23 to September 25. After 5 years of continuous extreme drought events, Re exhibited a consistent decreasing trend under the three periods of extreme drought, while Rs exhibited a non-significant decreasing trend in the early and midterm drought but increased significantly by 58.48% ( < 0.05) during the late drought compared with the ambient control. Plant coverage significantly increased by 79.3% ( < 0.05) in the early drought, and standing biomass significantly decreased by 18.33% ( < 0.05) in the midterm drought. Alkaline phosphatase, polyphenol oxidase, and peroxidase increased significantly by 76.46, 77.66, and 109.60% ( < 0.05), respectively, under late drought. Structural equation models demonstrated that soil water content (SWC), pH, plant coverage, plant standing biomass, soil β-D-cellobiosidase, and β-1,4-N-acetyl-glucosaminidase were crucial impact factors that eventually led to a decreasing trend in Re, and SWC, pH, β-1,4-glucosidase (BG), β-1,4-xylosidase (BX), polyphenol oxidase, soil organic carbon, microbial biomass carbon, and dissolved organic carbon were crucial impact factors that resulted in changes in Rs. Our results emphasize the key roles of plant and soil extracellular enzyme activities in regulating the different responses of Re and Rs under extreme drought events occurring at different plant growth stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551637PMC
http://dx.doi.org/10.3389/fpls.2021.756956DOI Listing

Publication Analysis

Top Keywords

extreme drought
28
drought
15
plant soil
12
enzyme activities
12
drought events
12
midterm drought
12
late drought
12
decreasing trend
12
plant
8
responses extreme
8

Similar Publications

Premise: Five C grasses (Bouteloua curtipendula, Schizachyrium scoparium, Andropogon gerardii, Sorghastrum nutans, Spartina pectinata) dominate different portions of a moisture gradient from dry to wet tallgrass prairies in the Upper Midwest of the United States. We hypothesized that their distributions may partly reflect differences in flooding tolerance and context-specific growth relative to each other.

Methods: We tested these ideas with greenhouse flooding and drought experiments, outdoor mesocosm experiments, and a natural experiment involving a month-long flood in two wet-mesic prairies.

View Article and Find Full Text PDF

Epigenetic mechanisms, including DNA methylation, histone modifications, and Noncoding RNAs, play a critical role in enabling plants to adapt to environmental changes without altering their DNA sequence. These processes dynamically regulate gene expression in response to diverse stressors, making them essential for plant resilience under changing global conditions. This review synthesises research on tropical and subtropical plants-species naturally exposed to extreme temperatures, salinity, drought, and other stressors-while drawing parallels with similar mechanisms observed in arid and temperate ecosystems.

View Article and Find Full Text PDF

Intensifying extreme droughts are altering lentic ecosystems and disrupting services provisioning. Unfortunately, drought research often lacks a holistic and intersectoral consideration of drought impacts, which can limit relevance of the insights for adaptive management. This literature review evaluated the current state of lake and reservoir extreme drought research in relation to biodiversity and three ecosystem services.

View Article and Find Full Text PDF

In arid and semi-arid climates, native plants have developed unique strategies to survive challenging conditions. These adaptations often rely on molecular pathways that shape plant architecture to enhance their resilience. Date palms (Phoenix dactylifera) and mangroves (Avicennia marina) endure extreme heat and high salinity, yet the metabolic pathways underlying this resilience remain underexplored.

View Article and Find Full Text PDF

The land use transition plays an important role for terrestrial environmental services, which had a mixed impact of positive and negative on the groundwater and terrestrial water resource. The health of ecological systems and groundwater depends on the mapping and management of land use. The Ganga basin is one of the most densely populated and agriculture-intensive river systems in the South Asia and the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!