Purpose: Available data on the effects of anti-diabetic drugs on fracture risk are contradictory. Therefore, our study aimed to analyze all available data on the effects of anti-diabetic drugs on fracture risk in type 2 diabetes mellitus (T2DM) patients.

Methods: Embase, Medline, ClinicalTrials.gov, and Cochrane CENTRAL were searched for relevant trials. All data analyses were performed with STATA (12.0) and R language (3.6.0). Risk ratio (RR) with its 95% confidence interval (CI) was calculated by combining data for the fracture effects of anti-diabetic drugs, including sodium-glucose co-transporter 2 (SGLT2) inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, meglitinides, α-glucosidase inhibitors, thiazolidinediones, biguanides, insulin, and sulfonylureas.

Results: One hundred seventeen eligible randomized controlled trials (RCTs) with 221,364 participants were included in this study. Compared with placebo, trelagliptin (RR 3.51; 1.58-13.70) increased the risk of fracture, whereas albiglutide (RR 0.29; 0.04-0.93) and voglibose (RR 0.03; 0-0.11) decreased the risk of fracture. Other medications were comparable in terms of their effects on fracture risk, and no statistical significance was observed. In terms of fractures, voglibose (0.01%) may be the safest option, and trelagliptin (13.64%) may be the worst. Sensitivity analysis results were consistent with those of the main analysis. No statistically significant differences were observed in the regression coefficients of age (1.03; 0.32-2.1), follow-up duration (0.79; 0.27-1.64), and sex distribution (0.63; 0.15-1.56).

Conclusions: We found varied results on the association between the use of anti-diabetic drugs and fracture risk. Specifically, trelagliptin raised the risk of fracture, whereas voglibose and albiglutide showed benefit with statistical difference. Other drugs were comparable in terms of their effects on fracture risk. Some drugs (omarigliptin, sitagliptin, vildagliptin, saxagliptin, empagliflozin, ertugliflozin, rosiglitazone, pioglitazone, and nateglinide) may increase the risk of fracture, while others (such as dulaglutide, exenatide, liraglutide, semaglutide, lixisenatide, linagliptin, alogliptin, canagliflozin, dapagliflozin, glipizide, gliclazide, glibenclamide, glimepiride, metformin, and insulin) may show benefits. The risk of fracture was independent of age, sex distribution, and the duration of exposure to anti-diabetic drugs. When developing individualized treatment strategies, the clinical efficacy of anti-diabetic drugs must be weighed against their benefits and risks brought about by individual differences of patients.

Systematic Review Registration: This Systematic Review was prospectively registered on the PROSPERO (https://www.crd.york.ac.uk/PROSPERO/, registration number CRD42020189464).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553257PMC
http://dx.doi.org/10.3389/fendo.2021.735824DOI Listing

Publication Analysis

Top Keywords

anti-diabetic drugs
28
fracture risk
24
risk fracture
20
effects anti-diabetic
16
drugs fracture
16
fracture
12
risk
12
drugs
9
systematic review
8
data effects
8

Similar Publications

Introduction: Selenium nanoparticles (SeNPs) have drawn a lot of interest among researchers because of their distinct impact on antioxidant activity, anti-inflammatory tests, antibacterial activity, and in the treatment of various diseases. A. linearis has shown great findings in biomedical applications because of its physio-chemical compounds such as Aspalathin, orientin, and isoorientin.

View Article and Find Full Text PDF

Anti-diabetic and anti-microbial activity of aspalathus linearis and syzygium aromaticum formulation mediated zinc oxide nanoparticles.

Med J Malaysia

January 2025

Nanobiomedicine lab, Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India.

Introduction: Zinc oxide nanoparticles (ZnO NPs) exhibit a wide range of biomedical applications majorly used as antiinflammatory, anti-cancer, anti-diabetic, and anti-microbial activity and other biomedical applications because they show less toxicity and are very compatible. Zinc metal is an inorganic and essential element in the human body at the trace level. ZnO NPs are also GRAS substances (Generally Recognized As Safe).

View Article and Find Full Text PDF

To illustrate the anti-diabetic properties of Berberis orthobotrys seeds was the aim of the current study. After a series of experiments, two doses of aqueous methanolic extract of the seeds were selected i.e.

View Article and Find Full Text PDF

Neuroendocrine tumors and diabetes mellitus: which treatment and which effect.

Endocrine

January 2025

Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy.

Diabetes mellitus (DM) and neuroendocrine tumors (NET) can exert unfavorable effects on each other prognosis. In this narrative review, we evaluated the effects of NET therapies on glycemic control and DM management and the effects of anti-diabetic therapies on NET outcome and management. For this purpose, we searched the PubMed, Science Direct, and Google Scholar databases for studies reporting the effects of NET therapy on DM as well as the effect of DM therapy on NET.

View Article and Find Full Text PDF

Drugs repurposing in the experimental models of Alzheimer's disease.

Inflammopharmacology

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.

The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!