Abstract: A mapping of a macromolecule is a prescription to construct a simplified representation of the system in which only a subset of its constituent atoms is retained. As the specific choice of the mapping affects the analysis of all-atom simulations as well as the construction of coarse-grained models, the characterisation of the has recently attracted increasing attention. We here introduce a notion of scalar product and distance between reduced representations, which allows the study of the metric and topological properties of their space in a quantitative manner. Making use of a Wang-Landau enhanced sampling algorithm, we exhaustively explore such space, and examine the qualitative features of mappings in terms of their squared norm. A one-to-one correspondence with an interacting lattice gas on a finite volume leads to the emergence of discontinuous phase transitions in mapping space, which mark the boundaries between qualitatively different reduced representations of the same molecule.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550479PMC
http://dx.doi.org/10.1140/epjb/s10051-021-00205-9DOI Listing

Publication Analysis

Top Keywords

reduced representations
12
mapping space
8
journey mapping
4
space
4
space characterising
4
characterising statistical
4
statistical metric
4
metric properties
4
properties reduced
4
representations macromolecules
4

Similar Publications

Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.

View Article and Find Full Text PDF

Seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine is recommended by the World Health Organization since 2012 for clinical malaria prevention in children in the Sahelian region of Africa. In Senegal, SMC implementation began in 2013 and is given to children under 10 years old. This study aimed to describe clinical malaria incidence in the general population during routine SMC implementation and to analyse how SMC timing impacted clinical malaria dynamics in eligible children.

View Article and Find Full Text PDF

Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.

View Article and Find Full Text PDF

Flexible framework of computing binding free energy using the energy representation theory of solution.

J Chem Phys

January 2025

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

Host-guest binding plays a crucial role in the functionality of various systems, and its efficiency is often quantified using the binding free energy, which represents the free-energy difference between the bound and dissociated states. Here, we propose a methodology to compute the binding free energy based on the energy representation (ER) theory of solution, which enables us to evaluate the free-energy difference between the systems of interest with the molecular dynamics (MD) simulations. Unlike the other free-energy methods, such as the Bennett acceptance ratio (BAR), the ER theory does not require the MD simulations for hypothetical intermediate states connecting the systems of interest, leading to reduced computational costs.

View Article and Find Full Text PDF

In the cultivation of green chili peppers, the similarity between the fruit and background color, along with severe occlusion between fruits and leaves, significantly reduces the efficiency of harvesting robots. While increasing model depth can enhance detection accuracy, complex models are often difficult to deploy on low-cost agricultural devices. This paper presents an improved lightweight Pepper-YOLO model based on YOLOv8n-Pose, designed for simultaneous detection of green chili peppers and picking points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!