AI Article Synopsis

  • The dataset offers detailed information on the geographic distribution of 211 endemic alpine plant species in northern Asia, derived from the atlas "Endemic alpine plants of Northern Asia."
  • It includes a total of 13,709 species distribution records, which can help researchers study the distribution factors of these plants.
  • The research aims to enhance understanding of alpine endemism in northern Asia, revealing insights about how mountain ranges may have served as refugia during the Pleistocene ice ages.

Article Abstract

Background: We describe a dataset providing information on the geographic distribution of northern Asian endemic alpine plants. It was obtained by digitising maps from the atlas "Endemic alpine plants of Northern Asia". Northern Asia includes numerous mountain ranges which may have served as refugia during the Pleistocene ice ages, but there have been no studies that analysed this question. We suggest that this dataset can be applied for better understanding of the alpine endemism in northern Asia.

New Information: The dataset includes 13709 species distribution records, representing 211 species from 31 families and 106 genera. Each record provides data regarding the distribution of an individual species. These data provide a foundation for studying northern Asia's endemic alpine species and conducting research on the factors concerning their distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8530994PMC
http://dx.doi.org/10.3897/BDJ.9.e75348DOI Listing

Publication Analysis

Top Keywords

plants northern
8
northern asia
8
endemic alpine
8
alpine plants
8
northern
6
distribution
5
distribution alpine
4
alpine endemic
4
endemic plants
4
dataset
4

Similar Publications

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

It is crucial to elucidate the impact of climate change on wheat production in China. This article provides a review of the current climate change scenario and its effects on wheat cultivation in China, along with an examination of potential future impacts and possible response strategies. Against the backdrop of climate change, several key trends emerge: increasing temperature during the wheat growing season, raising precipitation, elevated CO concentration, and diminished radiation.

View Article and Find Full Text PDF

Although the separate effects of water and nitrogen (N) limitations on forest growth are well known, the question of how to predict their combined effects remains a challenge for modeling of climate change impacts on forests. Here, we address this challenge by developing a new eco-physiological model that accounts for plasticity in stomatal conductance and leaf N concentration. Based on optimality principle, our model determines stomatal conductance and leaf N concentration by balancing carbon uptake maximization, hydraulic risk and cost of maintaining photosynthetic capacity.

View Article and Find Full Text PDF

Modelling mixed crop-livestock systems and climate impact assessment in sub-Saharan Africa.

Sci Rep

January 2025

Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, D-53115, Bonn, Germany.

Climate change significantly challenges smallholder mixed crop-livestock (MCL) systems in sub-Saharan Africa (SSA), affecting food and feed production. This study enhances the SIMPLACE modeling framework by incorporating crop-vegetation-livestock models, which contribute to the development of sustainable agricultural practices in response to climate change. Applying such a framework in a domain in West Africa (786,500 km) allowed us to estimate the changes in crop (Maize, Millet, and Sorghum) yield, grass biomass, livestock numbers, and greenhouse gas emission in response to future climate scenarios.

View Article and Find Full Text PDF

Assessment of microplastic ecological risk and environmental carrying capacity of agricultural soils based on integrated characterization: A case study.

Sci Total Environ

January 2025

Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China. Electronic address:

Microplastic pollution in agricultural soils poses a significant threat to soil quality and environmental sustainability. This study investigated the composition, abundance, distribution, ecological risk, and environmental carrying capacity of microplastic pollution in the Tarim River Basin (TRB), China. The risk quotient combined with soil environmental carrying capacity (SECC) approaches was proposed to evaluate ecological risks and soil sustainability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!